Early Television Museum

Sunday 12-5
Saturday 10-6

771-0510
Capehart CXC-12

Made in 1954, this is the only surviving example of this early 13 inch color set. It uses the CBS 19VP22 tube. It was restored by Steve Kissinger.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen Size</td>
<td>13 inch</td>
</tr>
<tr>
<td>Frame Model</td>
<td>CXC-12</td>
</tr>
<tr>
<td>Cabinet</td>
<td>1954</td>
</tr>
<tr>
<td>Electronic Restoration</td>
<td>Original Finish, Restored</td>
</tr>
</tbody>
</table>
Capehart CXC-12

Made in 1954, this is the only surviving example of this early 19 inch color set. It uses the CBS 19YP22 tube. It was restored by Steve Kissinger.

<table>
<thead>
<tr>
<th>Screen Size</th>
<th>19 inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Made</td>
<td>1954</td>
</tr>
<tr>
<td>Cabinet</td>
<td>Original Finish</td>
</tr>
<tr>
<td>Electronic Restoration</td>
<td>Restored</td>
</tr>
</tbody>
</table>
Capehart CXC-12

Made in 1954, this is the only surviving example of this early 19 inch color set. It uses the CBS 19VP22 tube. It was restored by Steve Kissinger.

- Screen Size: 19 inch
- Year Made: 1954
- Cabinet: Original Finish
- Electronic Restoration: Restored
FIRST TIME at DAVEGA

Full Color Television

Now Available: CBS-Columbia Glorious Color Television

Color Television Receivers Use The Only Approved Color System

FOR FURTHER INFORMATION - CALL VIA 44648

No Cash Down - 78 Weeks to Pay

Davega Will Give A Big Allowance For Your Present TV - Both In or Out. The Value Of Your Present TV Now More

Not Next Year, Not Tomorrow - But Today!

All You Do Is, Pick A Switch To Enjoy...

Special Trade-In Offer!
CBS Color
Personal Viewer

This viewer came from the estate of John Christiansen, a CBS engineer. It was designed to be placed on a table where a person could look through the opening at a black and white set some distance away. With this arrangement, a set of any screen size could be used.

We don't know if this was for laboratory testing, or if it was a prototype of a unit to be sold in the public. The knob on the rear is a motor speed control, and there is apparently no provision for gain. The operator would adjust the knobs until the proper colors appeared, and would have to constantly re-adjust it to keep the colors right.

We plan to modify the Bendix-285AV selenium cell collection to operate with CBS field sequential video, and use it with the personal viewer.
COLOR TV SHELVED. LEADERS HAIL YALE AS A DEFENSE STEP ON 250TH BIRTHDAY.

Wilson Adds CBS to Half Set of Leaders Who Condemn紹寢詳

Output to Save Materials; to the Mother of Colleges

and Network Agrees

N.Y. Times Oct. 31

The Yale 250th Birthday Celebration will take place on Nov. 29, 30 and 31. This is a momentous occasion in the history of Yale University, as it celebrates its 250th birthday. The university has a rich history and has produced many distinguished graduates, including George Washington, John Adams, and Alexander Hamilton.

The celebration will feature a variety of events, including a concert, a lecture by a distinguished scholar, and a banquet. The banquet will feature a three-course meal, with drinks included.

The university has also invited several leaders from around the world to attend the celebration. These leaders include the President of France, the Prime Minister of Japan, and the Chancellor of the University of Oxford.

The celebration is not only a momentous occasion for Yale University, but also for the entire country. It is a testament to the enduring spirit of education and excellence that Yale University embodies.
This is your CBS-Columbia Companion Color Receiver. This handsome Companion Color Receiver is quickly, easily attached to your CBS-Columbia Color Convertible. With your CBS-Columbia Companion Color Receiver, you'll see a magic new world of television — beautiful, vibrant full-color, the viewing thrill of a lifetime!
RCA DEBUTS
COMPATIBLE COLOR TV
1953/54
Color TV Gets Quick Go-Ahead; First Program Goes on Tomorrow

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS

THE NEW YORK TIMES, MONDAY, DECEMBER 26, 1955.

Color TV Gets Quick Go-Ahead; First Program Goes on Tomorrow

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS

THE NEW YORK TIMES, MONDAY, DECEMBER 26, 1955.

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS

THE NEW YORK TIMES, MONDAY, DECEMBER 26, 1955.

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS

THE NEW YORK TIMES, MONDAY, DECEMBER 26, 1955.

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS

THE NEW YORK TIMES, MONDAY, DECEMBER 26, 1955.

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS

THE NEW YORK TIMES, MONDAY, DECEMBER 26, 1955.

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS

THE NEW YORK TIMES, MONDAY, DECEMBER 26, 1955.

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS

THE NEW YORK TIMES, MONDAY, DECEMBER 26, 1955.

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS

THE NEW YORK TIMES, MONDAY, DECEMBER 26, 1955.

Television in Review: Color Films

ON THE RADIO

ON TELEVISION

ON TELE

COLOR TV RUSHED TO MANY OUTLETS

ON THE RADIO

FM PROGRAMS
"The Groaner" will sing and dance his way through a variety show over

AUDIENCE

President and Mrs. Eisenhower are now among the few who can enjoy color television. A color set has been installed in the oval study of the White House, which also contains two twenty-one-inch black-and-white receivers. The set was a gift of David Sarnoff, chairman of the board of the Radio Corporation of America.

NEWS AND NOTI

By SIDNEY LOHMAN

ONE of the most ambitious cooperative ventures utilizing the facilities and personnel of the broadcasting industry and a major university gets underway this week with the opening of Columbia University's bicentennial celebration. All year long regularly scheduled programs—plus others specially arranged—will be promoting the bicentennial theme: "Man's Right to Knowledge and the Free Use Thereof."

According to Leon Levine, director of radio and television for the bicentennial, Columbia is not seeking publicity for itself but is stimulating a crusade for free inquiry and free expression. To this end he has furnished story material and ideas to program producers and directors throughout the

earlier, the Television Playhouse, in its adaptation of Robert Alan Aurthur's book, "The Glorification of Al Toolum," touched on the identical subject matter and offered an eminently credible and amusing production.

It must be hoped that in his future plays Mr. Sherwood will make more positive use of the wide latitude he has been granted.
TP400
This tube was used in the 1948 Philco 48-2500 projection set.

Rauland 6620
Prototype projection tube made for CBS
This tube was made in by DuMont in 1936. It was used in their 100 series sets.
Farnsworth Utilitiescope
Image Dissector
Camera and Monitor

This camera was made in the late 40s
or early 50s by Farnsworth for the
Diamond Power Specialty Co. of
Lancaster, Ohio. It uses an image
dissector camera tube (in the Evans
Johnson CT1 collimator), and was
made to monitor boilers in power
plants. The image dissector had very
poor light sensitivity, but it was ideal
for high light levels such as the
fluorescent inside a boiler.

The camera has its own sync-down
sync generator, with both video and
RF output.
Western Electric Video and Waveform Monitors

These monitors were made for the Western Electric Co. (the Bell system equipment manufacturer) in 1946 for use in Bell’s first microwave TV network. The video monitor was donated by Don Keating of Weston, CT.
RCA made about 100 of these sets in 1932-33 for field trials of 242 line electronic television. This model has a 3-inch screen, and is one of only two to survive.

RCA never sold the sets to the public. They were placed in locations around New York to test TV reception.

<table>
<thead>
<tr>
<th>Screen Size</th>
<th>8 inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Model</td>
<td>1932</td>
</tr>
<tr>
<td>Model Number</td>
<td>Model 386</td>
</tr>
<tr>
<td>Number S/N</td>
<td>2</td>
</tr>
<tr>
<td>Carton</td>
<td>Original Finish</td>
</tr>
</tbody>
</table>

Statement
Crest Labs Bar Generator

This device was made in the late 40s to generate vertical and horizontal bars to adjust the linearity of TV sets. It was installed on the back of the picture tube to make the adjustments.

(Donated by Joe Sousa)
This device was designed to be used to increase the IF gain in late 40s and early 50s TV sets. One of the IF amplifier tubes was removed, and the booster was plugged in.
TV is KING

The art of the 20th century – now in the box!
Hollis Baird C-3-5
Television Adaptor

The Shortwave and Television Corp. of Boston made this adaptor. It received short wave (2-3 mHz) TV transmissions and connected to the neon bulb in a scanning disk unit. We are missing the chassis for this adaptor.
A doll like this was used by RCA in its TV tests from 1929 through 1933. It was placed on a turntable and rotated in front of the camera. If you look closely at the picture of the RCA camera on the left, you can see Felix.
Dynatron Ether Sovereign

This set was made around 1948 and was probably the most expensive TV ever made in the UK.
Dynatron equipment was very expensive, and this set has a top class radio tuner and amplifier with the TV in the middle and the radio on one side and the phonograph on the other side. There are only about 3 in the United Kingdom.

This set has a special history. It was the demonstration model for the radio show and was kept at Dynatron's head office until they were taken over by Roberts Radio (the last British radio manufacturer).

<table>
<thead>
<tr>
<th>Screen Size</th>
<th>10 inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Made</td>
<td>1948</td>
</tr>
<tr>
<td>Cabinet</td>
<td>Original Finish</td>
</tr>
<tr>
<td>Electronic Restoration</td>
<td>Not Restored</td>
</tr>
</tbody>
</table>
Philips Projection Set Optical Alignment Device

This device was used to adjust the optical focus of sets using the Philips Protolgram projection assembly. The device is installed in place of the 3NP4 CRT. It has a test pattern on its face, with a light bulb behind it. Once the image was focused on the screen, the device is removed, the CRT re-installed. Then the electrical focus could be set.
In the case of centrifuge tables, it should be remembered that high voltages may exist on all uninsulated conductors in the vicinity of the drive motor and centrifuge or shaker. Therefore, before any work is done, all switches or circuit breakers should be turned off and all terminals of any machine should be grounded.

NOTES:
1. All dimensions are determined by position where a location is required. Unless specifically designated, any dimension is subject to change.
2. All adjustments for this model should be made with equipment in a horizontal position with the motor end up. When using equipment other than the specified shaker, refer to manufacturers' instructions. The specifications are subject to change without notice.
3. All data is based on a model with a centrifuge with specified shaker. Operation on a model with a centrifuge and specified shaker must be in accordance with the manufacturer's instructions. The specifications are subject to change without notice.
Sharp-Cutoff Beam Triode
High-Speed, Low-Capacity, Regulator Type
International Eq. 0-2535-C

Preliiminary and Test Factual Data
on RCA Fundamental

OPERATING CONSIDERATIONS
The characteristic chart, in the table, indicates data
are very close to the expected performance expected.
It is recommended that a minimum of 0.1 ohm
be used for the cathode resistor. A value of 0.01
ohm is recommended for the grid resistor. The
load resistor should be held at a minimum of
1000 ohms. The plate resistor should be held at
a minimum of 1000 ohms.

Fig. 1 - Average Power Dissipation as a Function of
Load Resistance and Plate Voltage for the
Regulator Triode

Fig. 2 - Forward Voltage-Current Characteristic
of the Triode

The data shown in Fig. 1 will allow for the
development of a large current plate resistance.

Fig. 3 - Waveform for the Triode

The circuit shown in Fig. 3 is a typical example of
an amplifier circuit. It is recommended that the
large current plate resistance be used in the
output stage to reduce the effect of the grid
voltage. The grid voltage should be held at
a minimum of 5 volts. The plate voltage
should be held at a maximum of 50 volts.

Fig. 4 - Average Power Dissipation as a Function of
Load Resistance and Plate Voltage for the
Regulator Triode

Fig. 5 - Forward Voltage-Current Characteristic
of the Triode

The data shown in Fig. 1 will allow for the
development of a large current plate resistance.

Fig. 6 - Waveform for the Triode
Purifying Coil, Beam-Positioning Magnets, and Neck-Shield Assembly

Preliminary and Tentative Data
on KCA Developmental

Purifying Coil

The purifying coil is a concentric coil consisting of a series of windings arranged on a common axis. The windings are connected in series, and the current flowing through each winding is equal. The coil is designed to be wound on a support frame and then connected to an external power supply. The coil is mounted on a support structure and is adjusted by changing the current flow through it. The purifying coil is used to remove impurities from a gas stream.

DATA

Purifying Coil

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>300 mm</td>
</tr>
<tr>
<td>Number of Turns</td>
<td>500</td>
</tr>
<tr>
<td>Current Capacity</td>
<td>10 A</td>
</tr>
</tbody>
</table>

Dimensional View

Terminal Connections for Developmental KCA-3000-A

Field-Neutralizing Coil

Field-Neutralizing Coil

Preliminary and Tentative Data
on KCA Developmental

Field-Neutralizing Coil

Field-Neutralizing Coil is a development of KCA. The coil is designed to be wound on a support frame and then connected to an external power supply. The coil is mounted on a support structure and is adjusted by changing the current flow through it. The field-neutralizing coil is used to neutralize the magnetic field produced by a magnetic source. The coil is designed to be wound on a support frame and then connected to an external power supply. The coil is mounted on a support structure and is adjusted by changing the current flow through it. The field-neutralizing coil is used to neutralize the magnetic field produced by a magnetic source.

DATA

Field-Neutralizing Coil

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>300 mm</td>
</tr>
<tr>
<td>Number of Turns</td>
<td>500</td>
</tr>
<tr>
<td>Current Capacity</td>
<td>10 A</td>
</tr>
</tbody>
</table>

Dimensional Outline

Terminal Connections for Developmental KCA-3000-A
Application of RCA Developmental Tricolor Kinescope Dev. No. C-73599 and Associated Tubes and Components

This material discusses the operation and adjustment of components for the RCA Developmental Tricolor Kinescope Dev. No. C-73599. Included is information on (1) mounting, shielding, and related components; (2) focusing, deflection, high-voltage, and dynamic-focus and convergence circuits; and (3) kinescope component adjustment procedure. Obviously, the circuits given are not the only ones that can be used, but are suggested as a starting point in experimental designs because they do not require unusual circuit arrangements.

1. MOUNTING, SHIELDING, AND RELATED COMPONENTS

The glass tricolor kinescope developmental No. C-73599 can be supported by any of numerous methods, but certain precautions should be taken into consideration when mounting the kinescope in this design. The front of the kinescope should be supported on the frame between the reed and the adjusting screw in such a manner that no pressure is carried directly on the flanges. The front support should be mounted in such a manner as to shield the kinescope from the surrounding material. A high-voltage insulator should be used to insulate the metal flange, which is the outer terminal, from the magnetic shield and other grounded elements.

The rear support of the kinescope can consist of the grounded magnetic shield supporting the kinescope to the area indicated in Fig. 1 or on the horizontal outline drawing in the tube bulletin (page 3). Actually, the rear support may be varied, since the rear shield need not be used to support the kinescope. The magnetic shield may be supported from the chassis or from the rear shield. Parts of copper-braze alloy or similar material should be provided between the magnetic shield and the glass envelope.

The deflection yoke should not be used for supporting the kinescope because it should be centered on the neck and free to move along the neck in the horizontal plane or a slightly larger diameter for adjustment purposes. The yoke must should also provide for a small amount of tricolor alignment. An assembly consisting of the purifying coil, drive-positioning magnet, and neck shield is preferably supported by the neck of the kinescope.

Shielding and Extraneous-Field Neutralization

Proper operation of the tricolor kinescope requires shielding of the electron beams from the earth's magnetic field and other extraneous magnetic fields. Shielding and effective neutralization of external magnetic

A suitable solution having the approximately described capability, due to digital data as described from Hickam Air Force Base, Hawaii, U.S.A.
Fields can be accomplished by the use of two shields and two coils. One shield, which may be used as part of the rear support of the kinescope, is located in the central portion of the kinescope envelope. The other shield is located on the tube wall. The coil is located around the periphery of the shield, the other coil is located on the tube wall.

Fig. 1 - Sketch showing the relative placement of components and the support rings on fluorescent screen and tube area.

For the central section, the magnetic shield may be made of beryllium-copper. Fig. 2 is a dimensional outline for a typical cone shield made of this material; although effective shielding is provided with high-quality alloys such as beryllium-copper, other materials, lower-cost shielding can be obtained with the use of multiple shields at 0.08 to 0.10 per cent boron-steel steel.s. The most effective shielding is provided by the use of unbalanced material having high permeability and low coercive force.

Properties of materials suitable for shields are:

<table>
<thead>
<tr>
<th>Material</th>
<th>Permeability at 100 Gauss (approx.)</th>
<th>Coercive Force (Bk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium</td>
<td>10000</td>
<td>0.005</td>
</tr>
<tr>
<td>Copper</td>
<td>5000</td>
<td>0.01</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>3000</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* A suitable cone shield (having dimensions of 8 inches length, 6 inches diameter at base) and 2 inches diameter at open end) may be obtained from the Beryllium Corporation of America Inc., 39 W. 40th St., N.Y.

In addition to rubber pads for cushioning, the shield may be conveniently equipped with a strip of beryllium-copper or other suitable material to provide the electrical contact for grounding the external conductive coating on the kinescope.

Fig. 2 - Dimensional outline of typical cone shield made of steel.

Field-Neutralizing Coil

For producing an adjustable magnetic field to neutralize the effects of external fields the use of a coil around the fluorescent screen of the kinescope is recommended. Such a coil in the field-neutralizing coil WT5 developmental No. 362-595-A. This coil is positioned around the periphery of the shield as shown in Fig. 3. Any current source necessary for the field of this coil is controlled in both amplitude and direction by adjustment of the core through 10. It is recommended that the current be adjusted by a metered potentiometer so that no external control of the current may be obtained. This control should provide a maximum of 100 milliamperes in either direction.

The current value will produce approximately 15 percent torque. Adequate high-voltage insulation between this coil and the metal flange of the kinescope is provided by the high-voltage insulator previously mentioned.
Deflection and High-Voltage Circuit

A schematic diagram of a complete horizontal-deflection and high-voltage circuit is given in Fig. 5. Current operation of this circuit can be obtained with a conventional high-voltage discharge circuit, such as the one shown, which is capable of delivering a driving voltage of the amplitude and waveform shown in Fig. 6. The circuits in parallel are used as horizontal-output tubes. In order that circuit efficiency be maintained, the output tubes must not be cut off rapidly at the end of each scanning cycle and kept cut off during the entire retrace interval. To ensure proper operation, it is desirable to add a negative peaking pulse to the sawtooth driving voltage during retrace. The winding be
Deflecting Yoke

Deflector Yoke 12-307-1

Specifications:
- Horizontal deflection
- Vertical deflection
- Characteristic

Data:
- Voltage
- Current
- Power

Note:
- Dimensions are approximate and subject to change based on manufacturer's requirements.
COLOR TEST SIGNAL I

COLOR TEST SIGNAL II

Definition: Synchronization

Synchronization is required development of composite signals that are used to ensure the television and horizontal sync transmissions. The signals are generated in the television and used to ensure proper phase and timing of the sync transmissions. The sync signals are generated from horizontal and vertical deflection circuits. The horizontal deflection circuits generate a sawtooth waveform that is used to drive the horizontal sweep circuits. The vertical deflection circuits generate a ramp waveform that is used to drive the vertical sweep circuits.

Automatic Gain Control

The automatic gain control (AGC) circuit is responsible for maintaining a constant output level regardless of variations in the input signal. The AGC circuit uses a feedback loop to adjust the gain of the amplifier in response to changes in the input signal level. When the input signal level increases, the gain of the amplifier is decreased to prevent overdriving the output. Conversely, when the input signal level decreases, the gain of the amplifier is increased to maintain the output level.

Horizontal Deflection and Vertical Deflections

The horizontal deflection circuits generate a sawtooth waveform that is used to drive the horizontal sweep circuits. The vertical deflection circuits generate a ramp waveform that is used to drive the vertical sweep circuits. The deflection circuits are powered by the power supply and are controlled by the sync signals that are transmitted from the sync generator.
Color Decoder

In order to encode the color information correctly, the video signal must be adjusted. It is necessary to generate a signal that will allow the decoder to properly decode the color information. The decoder requires the synchronization information, which is provided by the decoder's internal clock, to properly decode the color information.

The decoder uses this synchronization information to generate the correct video signal for each channel. The synchronization information is encoded into the video signal and is used to decode the color information.

Color-Synchronization

This diagram shows the decoder's internal clock, which is used to generate the correct video signal. The decoder uses this clock to properly decode the color information. The decoder also uses the clock to generate the correct synchronization information, which is encoded into the video signal.

The decoder uses this information to properly decode the color information. The decoder also uses the clock to generate the correct synchronization information, which is encoded into the video signal.
Fig. 4 shows the next stage of the decoder which extracts the actual picture information from the received signal. The receiver consists of two main sections, the decoder and the picture information processor. The decoder section contains the principal circuitry for the reception of the coded television signals and the processing of the coded signals to produce the actual picture information. The decoder section also includes the circuitry for the extraction of the picture information from the coded signals and the processing of the picture information to produce the actual picture signals for the television receiver. The picture information processor section contains the circuitry for the processing of the picture information to produce the actual picture signals for the television receiver. The picture information processor section also includes the circuitry for the extraction of the picture information from the coded signals and the processing of the picture information to produce the actual picture signals for the television receiver. The picture information processor section also includes the circuitry for the extraction of the picture information from the coded signals and the processing of the picture information to produce the actual picture signals for the television receiver. The picture information processor section also includes the circuitry for the extraction of the picture information from the coded signals and the processing of the picture information to produce the actual picture signals for the television receiver. The picture information processor section also includes the circuitry for the extraction of the picture information from the coded signals and the processing of the picture information to produce the actual picture signals for the television receiver. The picture information processor section also includes the circuitry for the extraction of the picture information from the coded signals and the processing of the picture information to produce the actual picture signals for the television receiver. The picture information processor section also includes the circuitry for the extraction of the picture information from the coded signals and the processing of the picture information to produce the actual picture signals for the television receiver. The picture information processor section also includes the circuitry for the extraction of the picture information from the coded signals and the processing of the picture information to produce the actual picture signals for the television receiver.
Tertiary amplification of the luminance signal in the second video amplifier stage, including section 2 of Fig. 16, line 3, brings the signal to a level suitable for application to the mixer. The frequency response of this video amplifier stage is determined by the combination of the cathode resistor and the grid capacitance seen through it. The response is flat from 30 cycles to 500 cycles. The output of this stage is inverted and applied to the input of the mixer through a coupling network.

The circuit diagram of a typical video amplifier is shown in Fig. 16. The signal is applied between the cathode of a triode amplifier and the grid of a second triode amplifier. The output of the second amplifier is applied to a third triode amplifier, which has a grid bias of approximately zero to prevent oscillation. The signal is then passed through a coupling network to the mixer.

The mixer circuit is shown in Fig. 17. The input signal is applied to the grid of the mixer, and the frequency response is determined by the combination of the grid capacitance and the coupling network. The output of the mixer is applied to the input of the video amplifier stage.
Fig. 3a - Photograph of top of the circuit boards.

Fig. 3b - Photograph of back of the circuit boards.
T.V. and Audio

The video signal, combined in the color-weather encoder, contains all the information necessary for the reproduction of the original picture. The signal is transmitted over the airwaves in the form of electromagnetic waves. The received signal is then amplified and processed to extract the audio and video components.

The audio signal is separated from the video signal and is transmitted over a separate channel. The audio signal is then amplified and transmitted to the receiver. The receiver demodulates the signal and reconstructs the original audio signal. The audio signal is then amplified and transmitted to the speaker, where it is reproduced.

The video signal is further processed to remove any interference and noise. The signal is then transmitted to the receiver, where it is demodulated and reconstructed. The reconstructed signal is then amplified and transmitted to the television screen, where it is displayed.

The television set receives the signal and reconstructs the original picture. The picture is then displayed on the screen. The television set also includes a speaker, which reproduces the audio signal. The video and audio signals are then transmitted to the viewer, who can enjoy the program.

Fig. 2. Amplifier

A

The schematic diagram is shown for a high gain tube circuit, 6DJ8, 6L6, 5U4 and 5670. The tube connection is shown in Fig. 2. The input for the 6DJ8 is through the cathode resistor. The 6L6 is used as a buffer for the second stage, while the 5U4 is used as the output stage. The final stage is a 5670 which provides the final amplification for the circuit.

B. Connection of Tuba

The number of tubes in the circuit is determined by the desired output level. The 6DJ8 provides the necessary gain for the 6L6, which acts as a buffer stage. The 5U4 and 5670 are used to provide the final output level.

Fig. 3: Schematic Diagram of RCA Developmental Color Television Receiver.
Contents

This bulletin contains the following three sections:

Section I — RCA Developmental Color Television Receiver
(Description of Circuit and Adjustment)

Section II — RCA Developmental Picture Monitor, Associated Tubes, Components and Circuit.

Section III — Constructional Data on Transformers and Coils.

Introduction

A circuit diagram of the RCA developmental color television receiver is shown in Fig. 1. This circuit is the same as that shown in Fig. 1 of Bulletin 145A-3 for several more recent models. The receiver provides for full automatic control of the color television receiver and will automatically turn on or off the set according to the time of day. The circuit is designed to give maximum flexibility for future development. The circuit in...
In the mid 50s the vidicon was developed, making possible low cost cameras for industrial use. This camera and associated CCU was the first one made by RCA. It has an internal modulator.
Astatic Booster

In the late 40s there were no TV stations in many parts of the country. Boosters were used to pull in distant stations.
Hollis Baird Receiver

The Shurtleff and Television Corp. of Boston made this receiver. It contains a model H-Y TV receiver with a model V-6 television adaptor chassis. It could receive transmissions from both the AM radio and 2-3 sideband television bands.

The scanning disk is for the 60 line standard, and has a synchronizing mechanism.
Baird Kit Copy

Televisor Kit was produced to teach the principles of television. It is a working model and includes the necessary components to understand how television works. It is particularly useful for educational purposes and for hobbyists interested in electronics.
Bell Labs Mirror Screws

These mirror screws were made by Bell Labs in New York in the early 30s, and were possibly used in picturephone experiments (one for the camera, one for the viewer). They were donated by the estate of Robert Ellenberger, a Bell Labs Engineer.

Mervyn Mirror Drum

This mirror drum was made in the early 30s in Britain. It produced a picture about 5 by 5 inches, and worked with the Baird 30 line standard.

Mervyn made a disk scanner kit, but we have found no information on a mirror drum set made by them.
Главное Управление
Электроспособности
промышленности
Метл. № 1146 1938 г.
HERE'S WHAT OWNERS OF RCA Victor TELEVISION RECEIVERS SAY

John McDermott owned this set RCA used to sell a weekly and finally to a few years ago. The set was the price of a set and down a weekly plan in 1933. The set was the price of a set and home and finally to a few years ago. Then it was moved to the McDermott's home in

Television receivers say

John McDermott, 341 West 57th Street, New York, New York,

“My experience with television was not as expected. I bought an RCA Victor set and was not satisfied with it. I returned it and received a refund. The service was excellent. I wish I had never purchased a television set.”

John McDermott, New York, New York,
Look to G-E in Television!

When the recent trip on the New York World's Fair, April 30, by General Electric Visitors to Television...
This set was introduced in 1954, and was the first to use a 21 inch picture tube. The chassis is very similar to the one in the CT-100, except that it has provisions for magentic convergence.

RCA 21-CT-55

Screen Size
21 inch

Year Made
1955

Quantity Made
20,000

Cabinet
Original Finish

Electronic Restoration
Not Restored
TELEVISION TODAY
PART 5
PRACTICE AND PRINCIPLES CLEARLY EXPLAINED

IN THIS ISSUE
THE ICONOSCOPE
BY W. C. WALKER AND W. C. McCardy
METHODS OF OBTAINING SYNCHRONISM
THE KERR EFFECT
OPTICS OF TELEVISION
ELECTRONIC AND MAGNETRON OSCILLATORS
PHOTOMETRIC UNIT'S
METHODS OF SCANNING IN CATHODE-RAY RECEIVERS

GEORGE NEWNES LIMITED
Decoded discs show earliest TV images

By Dean Narciso
THE COLUMBUS DISPATCH

The Early Television Museum in Hilliard has ancient examples of TV sets — some with spinning wheels, others with tiny face-eye screens.

Nothing there, however, is as old as the images that Don McLean, visiting from England, will show today during the Early Television Convention.

McLean found a way to convert images recorded on wax discs by a BBC engineer in the 1920s — images that no one had viewed since the day they were made.

As I reached down to grab a branch, I couldn't believe my eyes: a single, solitary sponge in a spot that defied the morel's preferred habitat.

I yelled for the girls — and bored them for the next 10 minutes, explaining all that I know about morels.

And then I realized that the moment of connection was one I desperately sought.

Obviously, Grandma had been with me that day after all.
She was trying to show me that I still struggle to find things even when they're right under my nose.

Brian Clark, 43, of Granville will drag his daughter out this weekend in search of morels.
Dolls plan Blues Station celebration

Discs

"Stick It!" (RCA) was produced in the United Kingdom.

EMMYS

"The Last Stand"

Bowman, California

April 25, 2004

Music

"Sticks and Stones"

The name you trust.

BOB WEBB

UNMISSABLE

Sticks and Stones

"Sticks and Stones"

"Sticks and Stones"

"Sticks and Stones"
Achtung

and the Innovation of Electronic Television, 1923-1945
DEDICATED THIS
19TH DAY OF AUGUST, 2009
TO THE MEMORY OF
WEBSTER D. JUNGE
CHARTER MEMBER
HERITAGE
RAIL-TRAIL COALITION
Student sculptures will adorn Rail Trail

Unveiling ceremony will be held Friday night.

BY MANDY YOST

Hilliard Darby and Davidson high school students have spent months creating permanent art installations for the Rail Trail throughout the year. Simply mail in the envelope with this article, have it appear, and return it with your $100 check to: Heritage Rail Trail Coalition, c/o Homestead Park, 4675 Cosgray Road, Amlin, Ohio, 43002.

Mother Nature will no longer be the only artist to decorate the Heritage Rail Trail. Hilliard Darby and Davidson high school students have spent months creating permanent art installations for the Rail Trail, which stretches from Hilliard to Plain City. The works will be unveiled in a ceremony led by Ayesha Don Schenk as part of the 7:30 p.m. Friday at the trailhead off Center Street.

The most recent 11-member Leadership Hilliard class came up with the idea to have students create the sculptures. Ayesha said, "Nothing’s ever been done this big with art in Hilliard before," she said. "This is a great opportunity to get kids involved and give them a chance to see what they can do with their skills." The sculptures will be unveiled at the end of the season.

The sculptures will be unveiled in a ceremony led by Ayesha Don Schenk as part of the 7:30 p.m. Friday at the trailhead off Center Street. The most recent 11-member Leadership Hilliard class came up with the idea to have students create the sculptures. Ayesha said, "Nothing’s ever been done this big with art in Hilliard before," she said. "This is a great opportunity to get kids involved and give them a chance to see what they can do with their skills." The sculptures will be unveiled at the end of the season.

Hildur Davidson junior Darya Vasquez (right) shows off one of the sculptures she and other Davidson and Darby art students created for the Heritage Rail Trail. "We are so proud of the work we did," she said. "We put in a lot of effort and hard work to make sure the sculptures are of high quality and fit in well with the surrounding environment." The sculptures will be unveiled at the end of the season.

The sculptures will be unveiled in a ceremony led by Ayesha Don Schenk as part of the 7:30 p.m. Friday at the trailhead off Center Street. The most recent 11-member Leadership Hilliard class came up with the idea to have students create the sculptures. Ayesha said, "Nothing’s ever been done this big with art in Hilliard before," she said. "This is a great opportunity to get kids involved and give them a chance to see what they can do with their skills." The sculptures will be unveiled at the end of the season.

The sculptures will be unveiled in a ceremony led by Ayesha Don Schenk as part of the 7:30 p.m. Friday at the trailhead off Center Street. The most recent 11-member Leadership Hilliard class came up with the idea to have students create the sculptures. Ayesha said, "Nothing’s ever been done this big with art in Hilliard before," she said. "This is a great opportunity to get kids involved and give them a chance to see what they can do with their skills." The sculptures will be unveiled at the end of the season.

"The kids were thrilled about having their work displayed in an outdoor space," teacher Lori Royal said. "I had kids coming in every day to work on their sculptures." The sculptures will be unveiled in a ceremony led by Ayesha Don Schenk as part of the 7:30 p.m. Friday at the trailhead off Center Street. The most recent 11-member Leadership Hilliard class came up with the idea to have students create the sculptures. Ayesha said, "Nothing’s ever been done this big with art in Hilliard before," she said. "This is a great opportunity to get kids involved and give them a chance to see what they can do with their skills." The sculptures will be unveiled at the end of the season.

"The kids were thrilled about having their work displayed in an outdoor space," teacher Lori Royal said. "I had kids coming in every day to work on their sculptures." The sculptures will be unveiled in a ceremony led by Ayesha Don Schenk as part of the 7:30 p.m. Friday at the trailhead off Center Street. The most recent 11-member Leadership Hilliard class came up with the idea to have students create the sculptures. Ayesha said, "Nothing’s ever been done this big with art in Hilliard before," she said. "This is a great opportunity to get kids involved and give them a chance to see what they can do with their skills." The sculptures will be unveiled at the end of the season.

The sculptures will be unveiled in a ceremony led by Ayesha Don Schenk as part of the 7:30 p.m. Friday at the trailhead off Center Street. The most recent 11-member Leadership Hilliard class came up with the idea to have students create the sculptures. Ayesha said, "Nothing’s ever been done this big with art in Hilliard before," she said. "This is a great opportunity to get kids involved and give them a chance to see what they can do with their skills." The sculptures will be unveiled at the end of the season.
This is one of the most unusual electrical devices ever made. It was built in Italy sometime between 1928 and 1932. The styling is from the German Bauhaus movement, which started in the mid-1920s and continued until the mid-1930s.

The design is based on the German 30-line standard, which was broadcast from Germany and France. Unlike the broadcast systems of the same era, this receiver is a "table model," with an output of 3.5 watts.

Specifications:
- System: 30-line
- Power: 1000 mW
- Circuit: Electronic Rectifier
- Frequency Range: 50-108 kHz
- Antenna: 1-7/16"