1,500,000 volts per microsecond
INSIDE STUFF—

RCA reveals all, with the aid of a lucite cabinet, in this 26-tube television-radio receiver on exhibit at the New York World's Fair. The receiver is a standard model, chromium plated, polished, and in working order.
TELEVISION in the FIELD

Public television service in New York is just one month old. Hereewith is a brief report of its problems, as well as its accomplishments, in this initial period of growth.

As this issue of Electronics goes to press, television is just one month old as a public service in New York City. Within that time, receivers have been placed on the market, prices established, sales made, installations completed. The field experience of the television system, without public tubes about 50 days. While it is hard to collect conclusive evidence in so short a time the editors offer this brief report.

Sets and Prices

A trip to Macy's department store on May 25th revealed that at that date four manufacturers have models priced and for sale: Andrea, DuMont, and RCA and Westinghouse. The only Andrea model thus far announced is a table model with a five inch "short" cathode-ray tube, containing 16 tubes and equipped to receive two channels. The price is $189.50. The DuMont Line has four models, all employing the same 22-tube television-sound chassis with 14-inch picture tube. A table model sells for $350, two consoles for $455 and $445, and a large console with all-wave radio for $540. The RCA line includes a sight-only 5-inch picture-tube television chassis at $199.50, a 5-inch sight-sound console model with all-wave radio at $295, a 9-inch 36-tube console with all-wave radio at $495, and a 12-inch console all-wave at $600. The only Westinghouse receiver on display was a 5-inch sight-only unit at $199.50.

The kit prices are universally lower. A Metropolitan kit, complete with tubes for $134, contains 16 tubes, and can be assembled and put in working order without test equipment. The Andrea kit, price $79.95 without tubes (tubes about 50 dollars extra), has been widely sold through other outlets. The Fulton Radio Corporation has a kit for sale, $89.50 without tubes ($55 extra for tubes). Reports are that several hundred kits were placed within three weeks after program service began.

The sales of complete sets are difficult to estimate, but a rough checkup indicates that between 1000 and 2000 sets have been placed in the hands of distributors and dealers by the manufacturers. Of these, only a small percentage, perhaps 300 or 400 in all, have been sold to the public. The total television audience, including field test receivers of the RCA system, is estimated at close to 500, exclusive of dealers. The dealers find as many as a thousand people a day dropping in to see the telecasts. A line of 100 people is usually on hand at Macy's before the 11:00 A.M. broadcast begins and later in the day the crowds increase.

Program Schedules and Techniques

The broadcast schedule at present maintained by NBC (the CBS transmitter is not expected on the air with programs until July) consists of a total of 25 hours per week. The "regular" programs, including variety acts, plays, etc., run from 8:30 to 9:30 Wednesday and Friday evenings. Saturday evenings have been occupied with sporting events picked up by the mobile units. Film transmissions, intended for use in demonstrating and installing receivers, are maintained from 11:00 A.M. to 4:00 P.M. Tuesdays and Fridays, and from 4:30 P.M. to 8:30 P.M. Wednesdays, Fridays and Saturdays. The film transmissions consist of approximately ten minutes of film (educational subjects for the most part) followed by a five minute intermission during which a standard test chart is displayed.

The programs are similar to those broadcast during the past year during the field tests of the system, but the advent of single-sideband transmission has considerably improved detail of the image and over-all quality. Remote pick-up broadcasts from the World's Fair have been made several times with good results. The mobile-unit trucks made a trip to Baker Field at Columbia University and were successful in radiating a broadcast of the Princeton-Columbia baseball game to the Empire State transmitter where it was rebroadcast to the public audience. The fact that only one camera was available to cover so large an area as a baseball field made it difficult to recognize the players and follow the detail of the plays but, with the aim of expert announcing by Bill Stern, the performance was projected satisfactorily, in the opinion of sports fans. Later, the trucks were run into the basement of Madison Square Garden, the camera placed on the grand-stand and a telecast of the six-day bicycle races broadcast at night, with the aid only of the standard projection lighting fixtures in the ceiling of the arena. The broadcated marked a milestone in remote pick-up practice, since ordinary telephone wires were used for the connecting video line, over a distance of more than a mile from the arena to Radio City.

The television signals were picked up by the NBC telemobile unit from the edge of the track at the Garden and were transmitted over existing telephone cables to the Circle central office on West 50th Street, and then over a similar circuit to NBC at Radio City. Special amplifier attenuator equalizers and their phase equalizers were provided at the Circle office and both the terminals. The adjustment of the over-all circuit was such that the signal was delivered at Radio City without noticeable impairment although the illumination available was far less than
was used for studio pickup, and thus made the undertaking a difficult one. The results were felt to be distinctly satisfactory.

This accomplishment has created considerable interest because of the use of pairs of ordinary telephone cable rather than the coaxial conductor which had been generally associated with the transmission of television signals. The use of ordinary telephone cables under certain conditions and properly arranged and equipped for the transmission of such a wide range of frequencies as television requires was discussed in a paper by A. B. Clark of Bell Labs before the American Institute of Electrical Engineers in January 1935. The recent experimental accomplishment is a practical demonstration of the possibilities which he then described. The energy loss of television current, however, in passage over a mile of ordinary telephone cable is about a million times greater than over a mile of coaxial cable. A series of measurements on the cable must precede its use. There must be some alterations in it, and the provision of amplifiers, and of special apparatus for equalizers of attenuation and phase. The recent experiment, therefore, does not imply that ordinary cable pairs can be economically used for television, except over comparatively short distances. What the experiment does show, however, is the possibility of using telephone cables to pick up television news and carry it over short distances to main lines of coaxial cable or to nearby transmitting stations. At the time of the broadcast, the available amplifiers and equalizers were suitable for a maximum video signal of 3 Mc, and this range can be extended.

Installation Procedures and Problems

The first installations have brought out the serious nature of several forms of interference, all of which have been prominent in earlier tests but which were tolerated because the engineers understood their cause and the difficulty of avoiding them. The public cannot be expected to be so lenient. Ignition interference is apparently the most serious offender. In the writer's experience, a dipole antenna was installed on the roof of an apartment house, 60 feet above, and roughly 50 feet back from, a traveled highway about 10 miles airline from the transmitter. The signal level existing at the antenna, at the upper end of the transmission line, exceeded one millivolt. The ignition from trucks, buses, and early vintage passenger cars is the most serious. In the presence of the carrier, the ignition "rattle" can scarcely be heard in the loudspeaker, but its effect on the picture is definitely noticeable as a loss of line synchronization, which is restricted to small groups of lines (perhaps five or ten lines in a group). The frame sync is very seldom affected, however.

The troublesome nature of diathermy interference has been very well illustrated in Electronics' laboratory, where the television receiver described last year (July to December issues) has been used to receive the transmission from W2XVT, the DuMont station at Passaic, N. J. This station has an output power of
50 watts, and is located 9.5 miles from the McGraw-Hill Building. The antenna heights are 80 feet at the transmitter and 495 feet at the receiver. The calculated signal strength is approximately 500 microvolts, but substitution measurements indicate that the actual signal strength is in the neighborhood of 100 microvolts. The receiver is successful in reproducing a synchronized image, but the interference is, of course, very prominent. Diathermy interference destroys the image fully 25 per cent of the time. Ignition is much less prominent, due to the height of the receiving antenna above the street. Tube and circuit noise is plainly visible when the gain is maximum.

The reflection problem, which produces ghost images, may arise in a variety of guises. In the antenna system on the McGraw-Hill Building, two separate dipoles are mounted on the same standard, nearly at right angles, one two feet above the other. One of the dipoles has an extremely low-loss lead-in composed of 50 feet of "twist" coaxial cable (two cables bound in a single sheath), balanced to ground. If the terminals of this cable are left open-circuited, a reflection is induced which completely obliterates the fine detail of the image when the receiver is connected to the other dipole. When the low-loss line is short-circuited, the reflection disappears. When two or more dipoles are installed near each other, as on the roofs of apartment buildings, this effect can readily occur, and it may be extremely difficult to find unless access to both lead-in terminations is available.

Sales Methods—and Mistakes

The demonstration of television receivers to the public is as yet not too thoroughly understood by many dealers. The necessity of shielding the face of the cathode-ray tube from external light has been recognized in most instances (most dealers have provided a darkened booth, or corner of the store protected by a heavy curtain in which to demonstrate the receivers). But the effect of the settings of the brightness and contrast controls on the appearance of the image is not so well appreciated. In one store visited by the writer, great care was taken to shield the receiver from stray light, but the brightness control was set at a level two or three times the maximum value for which the engineers designed the set. This made a very bright picture (there was plenty of gain to allow adequate contrast even with excessive brightness) but the excess current in the scanning beam caused the scanning spot to assume a diameter three or four times its normal value, and the detail of the reproduced image suffered in inverse proportion. When the test pattern appeared between the film transmissions, the resolution wedges for showing vertical detail showed less than 200-line resolution whereas 300- to 350-line resolution would have been normal performance. Had the demonstrator been aware of the trouble he could have corrected it by a twist of the brightness knob, and after the eye had accommodated itself to the decreased brightness (a matter of a few seconds only) the picture would have appeared nearly as bright and

This transmission from the DuMont station, of high quality when initially broadcast, has been impaired by interference almost beyond recognition. The signal level at the receiver was about 100 microvolts. Diathermy interference (center wavy lines) and circuit noise (note "T" in Passaic) are troublesome at such low signal levels.

(Continued on page 30)
RCP Instruments

Three things mighty important to you in test equipment: precision, wide service application, low price. And they all add up to RCP! Dependability is an RCP word. It comes from precision engineering, it stands back of a line of test instruments known all over the world for long life and trouble-free service. Check these two models for extra features.

New RCP Model 660 Electronic Multimeter

The exceptional ranges, sensitivity and facilities for measuring large values make possible the new versatile Model 660. It offers the user a wide choice of measuring instruments ranging from 2 to 4 times the price of the Model 660. Lower voltage reading 0.1 volt (full scale), highest voltage reading 6,000 volts. Six individual overlapping voltage ranges. Lowest ohmmeter reading 1 ohm, highest ohmmeter reading 1,000,000 ohms. Individual overlapping ranges. Maximum voltage used in ohmmeter 10,000 volts. No exposure to high voltages when making high resistance measurements. Extreme operating simplicity as well as wide service application makes this instrument ideal for the amateur. 240 volt AC service, supplied complete in hard-cabled slip-on walnut case. Net price $18.95

RCP Model 411 35 Instruments

Best all around tester for engineer, electrician, and serviceman. Some of the unusual features of this instrument: 3 stage AC-DC, voltage range to 5,000 volts. 3 stage AC-DC, current range to 25 amps. DC milliamperes 0/10/100. DC micrometers 0/10/100. 3 stage ohmmeter range to 4,000,000 ohms. Model 411 in a natural hardwood case net $16.25, Model 411P with plastic cover, net $17.95. Other useful instru-ments for the complete RCP quality line of testers described in catalog free on request.

TELEVISION FIELD

(Continued from page 15)

several hundred per cent improved in quality. It is this sort of thing that makes engineers grind their teeth.

The remedy seems to be more careful instructions, on the part of the manufacturer, to dealers. The same remarks apply of course to the instructions which go to the ultimate purchaser.

Those sets employing large picture tubes (12 and 14 inches in diameter) seem to be doing a uniformly good job in resolving the detail of the image. In one case, a receiver on demonstration in a midtown store was actually resolving all the detail in the test pattern (i.e., 350-line resolution in both vertical and horizontal directions). Other sets of the same type were limited to about 200 lines in the horizontal direction, while in a few cases the horizontal definition seemed to be no greater than 250 lines (in the latter case perhaps reflections were the cause). In the five-inch picture-tube receivers, the detail performance is considerably lower. In the first place, the spot size of the tube is large, rela-
PROFESSIONAL SERVICES

ELECTRICAL TESTING LABORATORIES

International Electronics, Inc.

Harold J. McCreary

Consulting Engineer

PHOTOBELL CORPORATION

Radio & Television Engineering Service

Radio & Television Engineering Service

PROFESSIONAL ASSISTANCE

In the solving of your most difficult problems in the highly specialized field of electronic devices is offered by consultants whose cards appear on this page.

ELECTRONICS—June 1939

Type 176

Fixed Capacity

Compressed Gas Condenser

Capacity: 50,000 mmf.
Price: $162—$325.
Voltage: 40 kv, peak rating.
WRITE FOR DATA

Leach LR RELAYS

Positive Protection

For Your Power Tubes. These light duty overload trip relays have a wide field of use as safety devices on electronic apparatus. Operation is usually dependable. Scores of nationally known concerns rely on Leach Relays for protection.

Leach Relay Company
5915 Avalon Boulevard, Los Angeles, Calif.

SEND COUPON

Please send me your catalogs.

NAME

ADDRESS

CITY

91
fairly scarce. We have permission to reproduce here, however, the complete circuit diagram of the type TRK-12 RCA receiver, whose interior arrangements are shown in the frontispiece. The complexity of the diagram and the small space in which it must be printed make the diagram somewhat difficult to read, but it will repay study on the part of engineers who desire to familiarize themselves with the details of a modern television receiver. The circuit as shown includes the complete sight system, and the sound system up to the output of the second detector. An 11-tube all-wave radio receiver chassis, included in the cabinet, contains the audio output tubes and loudspeaker.—D.G.P.

PROGRESS REPORT
(Continued from page 27)
Recent developments in the production of ultra-steelite by the General Ceramics Corp., make it particularly suitable for critical insulation in the u-h range; the material displays a loss factor of 0.51 compared with 0.08 to 0.12 for fused quartz. General Plastics, Inc., announce the ability of Durex phenolic to mold accurately in extremely small parts, such as pins and tumblers of volume-control switches. New insulation and wide-spaced contacts are available from Guardian Electric Mfg. Co. Heintz and Kaufman have produced a six-position band-swich for use in high power transmitters, capable of handling a kilowatt of r-f power. Hygrade-Sylvania has just announced five-inch "short" cathode-ray tubes with green or white fluorescent screens. The newest tube in the Hytron line is an extremely compact pentode with control grid and plate brought out to grid cap, designed as a mate to the triode of similar construction which is already available.

The Megabridge, a new insulation resistance tester with ranges available up to 100,000 megohms, is made by Industrial Instruments, Inc. A new design of wire-wound resistance controls especially suitable for rugged service and minimum noise has been produced by the International Resistance Co. New indicator
Over 20,000 Years of Radio Experience
Stand Behind RCA Tubes

That is not a boast. It is a fact. And a fact that means every tube bearing the RCA trademark is a tube you can depend upon to perform for you with unmatched efficiency! It is an "extra" that only RCA can offer you!

You know well the value of experience. It often spells the difference between perfection and mediocrity. With it a man acquires skill.

And it is this skill based on experience that you will find in the RCA tube plant in Harrison, New Jersey. Here work the world's foremost radio tube people...whose engineering and manufacturing experience totals more than 20,000 years. Many of them are RCA engineers, men who have been associated with radio tubes since the birth of broadcasting.

RCA Radio Tube Achievements—The Results of Skillful Engineering

Listed below are 12 RCA tube "firsts." These and many others are the result of skillful engineering.
The first small-screen cathode-ray tubes. . . . The first complete line of cathode-ray tubes. . . . The first commercial 1,000-watt cathode-ray tubes. . . . The first ultrahigh-frequency tubes of any type. . . . The first television amplifier tubes featuring high trans-conductance. . . . The first commercial fluoroscopes. . . . The first beam power tubes. . . . The first Magic Eye tubes. . . . The first pentagrid converters. . . . The first metal tubes. . . . The first cartridge phototubes. . . . The first monoscope signal generator tubes.

Skillful engineering is also responsible for RCA Kinescopes. The development of these tubes was one to which many engineers at the huge RCA tube plant in Harrison, New Jersey, contributed. It presented many difficult problems. But in the end, the ability of RCA engineers—plus the vast resources of RCA—conquered every obstacle.