ALIGNMENT INSTRUCTIONS (CONT.)

TF AND MIXER ALIGNMENT

Connect the oscilloscope sweep voltage to the signal generator and observe the waveform of the sweep indicator for horizontal deflection. The sweep-generator output level should be attenuated to the same level as the input level for horizontal deflection.

The sweep-generator output level should be attenuated to the same level as the input level for horizontal deflection.

Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

Check the circuitry similar to Fig. 4. If necessary, adjust the horizontal sweep by the following methods:

1. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

2. Adjust the horizontal sweep by the following methods:

 a. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 b. Adjust the horizontal sweep by the following methods:

 c. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 d. Adjust the horizontal sweep by the following methods:

 e. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 f. Adjust the horizontal sweep by the following methods:

 g. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 h. Adjust the horizontal sweep by the following methods:

 i. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 j. Adjust the horizontal sweep by the following methods:

 k. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 l. Adjust the horizontal sweep by the following methods:

 m. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 n. Adjust the horizontal sweep by the following methods:

 o. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 p. Adjust the horizontal sweep by the following methods:

 q. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 r. Adjust the horizontal sweep by the following methods:

 s. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 t. Adjust the horizontal sweep by the following methods:

 u. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 v. Adjust the horizontal sweep by the following methods:

 w. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 x. Adjust the horizontal sweep by the following methods:

 y. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 z. Adjust the horizontal sweep by the following methods:

 AA. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 BB. Adjust the horizontal sweep by the following methods:

 CC. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 DD. Adjust the horizontal sweep by the following methods:

 EE. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 FF. Adjust the horizontal sweep by the following methods:

 GG. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 HH. Adjust the horizontal sweep by the following methods:

 II. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 JJ. Adjust the horizontal sweep by the following methods:

 KK. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 LL. Adjust the horizontal sweep by the following methods:

 MM. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 NN. Adjust the horizontal sweep by the following methods:

 OO. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 PP. Adjust the horizontal sweep by the following methods:

 QQ. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 RR. Adjust the horizontal sweep by the following methods:

 SS. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 TT. Adjust the horizontal sweep by the following methods:

 UU. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 VV. Adjust the horizontal sweep by the following methods:

 WW. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 XX. Adjust the horizontal sweep by the following methods:

 YY. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 ZZ. Adjust the horizontal sweep by the following methods:

 AA. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 BB. Adjust the horizontal sweep by the following methods:

 CC. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 DD. Adjust the horizontal sweep by the following methods:

 EE. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 FF. Adjust the horizontal sweep by the following methods:

 GG. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 HH. Adjust the horizontal sweep by the following methods:

 II. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 JJ. Adjust the horizontal sweep by the following methods:

 KK. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 LL. Adjust the horizontal sweep by the following methods:

 MM. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 NN. Adjust the horizontal sweep by the following methods:

 OO. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 PP. Adjust the horizontal sweep by the following methods:

 QQ. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 RR. Adjust the horizontal sweep by the following methods:

 SS. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 TT. Adjust the horizontal sweep by the following methods:

 UU. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 VV. Adjust the horizontal sweep by the following methods:

 WW. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 XX. Adjust the horizontal sweep by the following methods:

 YY. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 ZZ. Adjust the horizontal sweep by the following methods:

 AA. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 BB. Adjust the horizontal sweep by the following methods:

 CC. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 DD. Adjust the horizontal sweep by the following methods:

 EE. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 FF. Adjust the horizontal sweep by the following methods:

 GG. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 HH. Adjust the horizontal sweep by the following methods:

 II. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 JJ. Adjust the horizontal sweep by the following methods:

 KK. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.

 LL. Adjust the horizontal sweep by the following methods:

 MM. Adjust for horizontal sweep with the least deviation from the reference point in the waveform.
HORIZONTAL SWEEP CIRCUIT ADJUSTMENTS

Turn the set on and tune to a TV station, preferably a test pattern.
Adjust horizontal phasing as follows:

1. Turn horizontal hold fully clockwise.
2. Short the phasing coil by means of a clip lead across the phasing coil terminal strip (removed on top rear of chassis below V17).
3. Starting with horizontal frequency slug (S1) all the way counterclockwise with picture back in sync.
4. Adjust horizontal size slug (S2) if necessary. If picture leaves spot readjust S1.
5. Remove short from phasing coil and starting from fully counterclockwise position, raise phasing slug (S1) clockwise until picture leaves spot.
6. Switch momentarily to another channel, tune back again. If picture is out of focus turn S2 clockwise until picture looks in sync.

7. Readjust S2 for all channels so in sync. If necessary make slight adjustments of S3 until all channels received are good and in sync.
Adjust the horizontal size slug (S2) for a picture slightly wider than necessary to fill the picture mark horizontally.

FRINGE COMPENSATOR ADJUSTMENTS

If necessary, turn trimmer in or out to reduce black or reduce whiteness. Adjust only if necessary to locate correct operation in fringe areas.

Turn vertical so and focus control to near the center of range. Check all channels received and adjust vertical for best performance.

DISASSEMBLY INSTRUCTIONS

1. Remove 2 pair of control knobs from front panel.
2. Remove 4 wood screws. Remove rear cover.
5. Remove 4 clamp bolts. Remove chassis.

NOTE: FOR PUTTING TUBE REMOVAL, IT IS NECESSARY TO REMOVE CHASSIS AS OUTLINES ABOVE.

PAGE 11
PARTS LIST AND DESCRIPTIONS (Continued)

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>USE</th>
<th>DC Res.</th>
<th>ENCLOSURE PART No.</th>
<th>PARTS PART No.</th>
<th>DC Res.</th>
<th>PARTS PART No.</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.A.</td>
<td>FIL, Choke</td>
<td>B31</td>
<td>700434</td>
<td>CLA</td>
<td>.08 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.B.</td>
<td>Filament Coil</td>
<td>B01</td>
<td>700046</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.C.</td>
<td>Choke, Choke</td>
<td>B01</td>
<td>700046</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.D.</td>
<td>Adj. Control</td>
<td>B30</td>
<td>700029</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.E.</td>
<td>Tray</td>
<td>B01</td>
<td>700039</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.F.</td>
<td>1-4000 Wattage Traps</td>
<td>B30</td>
<td>700039</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.G.</td>
<td>Fil. Filter</td>
<td>B30</td>
<td>700039</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.H.</td>
<td>L.S.C., Tube</td>
<td>B30</td>
<td>700039</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.I.</td>
<td>F.C.</td>
<td>B30</td>
<td>700039</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.J.</td>
<td>Metal F.C.</td>
<td>B30</td>
<td>700039</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.K.</td>
<td>1212</td>
<td>700034</td>
<td>TV-128</td>
<td>448 Microspheres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.M.</td>
<td>1215</td>
<td>700033</td>
<td>TV-135</td>
<td>448 Microspheres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.N.</td>
<td>Sheet Metal.</td>
<td>700034</td>
<td>TV-135</td>
<td>448 Microspheres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.O.</td>
<td>Sheet Sheet</td>
<td>700034</td>
<td>TV-135</td>
<td>448 Microspheres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.P.</td>
<td>L.S.T.</td>
<td>B01</td>
<td>700036</td>
<td>TV-135</td>
<td>448 Microspheres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.Q.</td>
<td>F.C.</td>
<td>B30</td>
<td>700039</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.R.</td>
<td>Choke</td>
<td>B30</td>
<td>700039</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.S.</td>
<td>Choke</td>
<td>B30</td>
<td>700039</td>
<td>CLA</td>
<td>.06 Microsphere</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FUSES

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>TYPE</th>
<th>RATING</th>
<th>EMERG. PART No.</th>
<th>LITTH. PART No.</th>
<th>BUS PART No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.I.</td>
<td>3 AG</td>
<td>1/4 A, 60V</td>
<td>604030</td>
<td>120.000</td>
<td>30/000</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>PART NAME</th>
<th>ENCLOSURE PART No.</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.F.</td>
<td>RF Transformer</td>
<td>412009</td>
<td>Multiplex, Model 525</td>
</tr>
<tr>
<td>M.G.</td>
<td>Feed Through</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.H.</td>
<td>Connecting Magnet</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.I.</td>
<td>Chokes</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.J.</td>
<td>L.S.C.</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.K.</td>
<td>Filament</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.L.</td>
<td>1212</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.M.</td>
<td>1215</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.N.</td>
<td>Metal F.C.</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.O.</td>
<td>L.S.C.</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.P.</td>
<td>Choke</td>
<td>101049</td>
<td>Early American Model 535</td>
</tr>
<tr>
<td>M.Q.</td>
<td>Control Door</td>
<td>900292</td>
<td>Control Door</td>
</tr>
<tr>
<td>M.R.</td>
<td>Coupling</td>
<td>900292</td>
<td>Control Door</td>
</tr>
<tr>
<td>M.S.</td>
<td>Back Cover</td>
<td>900292</td>
<td>Control Door</td>
</tr>
<tr>
<td>M.T.</td>
<td>Back Cover</td>
<td>900292</td>
<td>Control Door</td>
</tr>
<tr>
<td>M.U.</td>
<td>Knobs</td>
<td>400037</td>
<td>Control Control</td>
</tr>
<tr>
<td>M.V.</td>
<td>Parts. Tabs</td>
<td>400037</td>
<td>Control Control</td>
</tr>
<tr>
<td>M.W.</td>
<td>Control Knobs</td>
<td>900037</td>
<td>Control Control</td>
</tr>
<tr>
<td>M.X.</td>
<td>Control Knobs</td>
<td>900037</td>
<td>Control Control</td>
</tr>
<tr>
<td>M.Y.</td>
<td>Control Knobs</td>
<td>900037</td>
<td>Control Control</td>
</tr>
<tr>
<td>M.Z.</td>
<td>Control Knobs</td>
<td>900037</td>
<td>Control Control</td>
</tr>
</tbody>
</table>
CHASSIS BOTTOM VIEW-RESISTOR AND INDUCTOR IDENTIFICATION