DISASSEMBLY INSTRUCTIONS

CHASSIS & PICTURE TUBE REMOVAL

1. Remove 5 push-on type control knobs from the top.
2. Remove 6 chassis bolts from the bottom. (Three on each side, two at rear).
3. Remove chassis from the front of the cabinet.
4. Remove picture tube socket, Ion trap and centering device.
5. Loosen the yoke clamp by loosening the wing nut.
6. Remove the screw from the bottom mounting board retaining the cabinet front locking slide. This screw is located on the inside at the bottom left side of the front.
7. Move the slide to the left allowing the cabinet front mounting studs to drop through the holes in the front of the chassis mounting board.
8. The cabinet front and picture tube assembly may then be removed from the main chassis by passing the neck of the tube forward out of the yoke.
9. Remove the 4 springs from the tube clamping ring around the bell of the tube.
10. The tube is now free of the cabinet front and face glass for service or cleaning.

NOTE: Always use water and mild soap for cleaning the safety glass.

CAUTION NOTE

ONE SIDE OF AC LINE CONNECTED TO CHASSIS

SERVICING IN THE FIELD

TUNER OSCILLATOR ADJUSTMENTS

Touch-up adjustment of the VHF oscillator is possible by removing the channel selector and fine tuning knobs. Set the fine tuning at the center of its range. The adjustments (located in a circle around the shaft) should be made in sequence from the highest to the lowest channel in the area. Channel 15 adjustment is located at 1 o'clock, proceed in a counter clockwise direction adjusting for best picture and sound.

PICTURE TUBE SAFETY GLASS CLEANING

To clean the picture tube and safety glass it is necessary to remove the chassis and the picture tube. (See disassembly instructions.)

FOCUS

Adjust the Ion trap for the best focus consistent with maximum brightness.

HORIZONTAL OSCILLATOR FIELD ADJUSTMENT

Set the horizontal hold to the center of its range. Adjust the horizontal frequency slug (BG) until the picture synchronizes horizontally.

SOUND IF DETECTOR BUZZ ADJUSTMENT

To eliminate sound IF detector buzz, adjust the ratio detector secondary (A7) located on top of chassis.

FUSES

One fuse is used for LV power supply protection. (For location see tube placement chart.)

CENTERING

Centering is accomplished mechanically by adjusting two magnetic rings around the neck of the picture tube. Rotate the two rings around the neck of the tube until the picture is properly centered.

HOWARD W. SAMS & CO., INC. • Indianapolis 5, Indiana

"The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guaranty by Howard W. Sams & Co., Inc., as to the quality and suitability of such replacement part. The numbers of these parts have been compiled from information furnished to Howard W. Sams & Co., Inc., by the manufacturers of the particular type of replacement part listed." Reproduction or use, without express permission, of editorial or pictorial con-

DATE 6-57 SET 359 FOLDER 7
ALTERNATE TUNER SCHEMATICS
LOCATED ON PAGES 11 & 14.

1. DC voltage measurements taken with vacuum tube voltmeter, AC voltage measured at 1,000 ohms per unit.
2. Pin numbers are counted in a clockwise direction on bottom of socket.
3. Measured values are from socket pin to common negative unless otherwise stated.
4. Line voltage maintained at 117 volts for voltage readings.
5. All controls set for normal operation; no signal applied.

© Howard W. Sams & Co., Inc. 1957
TUBE FAILURE CHECK CHART

The following chart lists tubes whose failures are most likely to produce the indicated symptoms. Refer to tube placement chart for location and type of tube.

POWER SUPPLY FAILURE
No raster, no sound - Fuse (M3), Rectifier (M1)

LOSS OF PICTURE OR SOUND
No pic, no sound, has raster - V3, V6, Diode (M4), V9
No pic, no sound, has snow - V1, V9
No pic, has sound, has raster - V5, V13
Has pic, no sound - V6, V7

SYNC FAILURE
No vert, sync - V6
No horiz, sync - V5, Diode (M2)
No vert, or horiz, sync - V5

SWEEP FAILURE
No raster, has sound - V6, V10, V11, V12, V13
No vertical deflection - V6
Poor vert, linearity or foldover - V9
Poor horiz, linearity or foldover - V9, V16, V17
Narrow picture - V6, V10, V11, M1
Vert, off freq. - V9
Horiz, off freq. - V9

This receiver employs tubes used in a series filament network, an open filament in any tube in the series will cause the set to be inoperative. (See circuit below.)
ALIGNMENT INSTRUCTIONS—READ CAREFULLY BEFORE ATTEMPTING ALIGNMENT

USE AN ISOLATION TRANSFORMER TO PROTECT THE TEST EQUIPMENT.

Allow a 20-minute warm-up period for the receiver and test equipment.

VIDEO IF ALIGNMENT

Turn volume control fully counterclockwise and contrast control fully clockwise. Turn fine tuning fully counterclockwise.

Connect the negative lead of ± voltage bias supply to point A. Positive to chassis.

Connect the synchronized sweep voltage from the sweep generator to the horizontal input of the oscilloscope for horizontal deflection. The sweep generator output level should be terminated with its characteristic impedance, usually 50 ohms.

DUMMY ANTENNA

SWEEP GENERATOR COUPLING

SWEEP GENERATOR FREQUENCY

MARKER GENERATOR FREQUENCY

CHANNEL

CONNECT SCOPE

ADJUST

REMARKS

1. Direct

High side to ungrounded tube shield floating over mixer-osc. tube (V1). Low side to chassis. Use very short shielded leads.

Not used.

44.5MC

(30MC SWP)

11

USE VTVM DC probe to point 3 to 15k. Common to chassis.

A1

Use only enough generator output to provide usable indication on VTVM.

2. " " " " " " 44.5MC " " " A2 " "

3. " " " " " " 44.5MC " " " A3 " "

4. " " " " " " 44.5MC " " " A4 " "

5. " " " " " " 44.5MC (30MC SWP)

40.3MC 42.85MC 45.75MC

" Vert. amp thru 22k to point 3. Low side to chassis.

A1, A2, A3, A4

Adjust A1 and A5 simultaneously for maximum gain of response curve similar to Fig. 4. Adjust A4 to position 41.25MC and 42.85MC markers as in Fig. 4. Retouch A3 to place 41.25MC marker at 50% on curve. Retouch A1 and A3 to shape peak region of curve, if necessary.

SOUND IF ALIGNMENT

Connect two matched 100k (±2%) resistors in series from point 3 to chassis. The junction of these two resistors is alignment point 1, as shown on the schematic.

DUMMY ANTENNA

SIGNAL GENERATOR COUPLING

SIGNAL GENERATOR FREQUENCY

CHANNEL

CONNECT VTVM

ADJUST

REMARKS

6. Direct

High side to point 3. Low side to chassis.

4.5MC

(30MC SWP)

Any non-interfering channel.

DC probe to point 3. Common to chassis.

A5, A6

Adjust for maximum deflection on VTVM.

7. " " " " " " DC probe to point 3. Common to point 3. AT

Adjust for zero reading. A positive and negative reading will be obtained on either side of the correct setting. Repeat steps 6 and 7.

If 4.5MC generator of crystal accuracy is not available, a station signal may be used.

RF OSCILLATOR ALIGNMENT FOR TUNERS 8RX-024 AND 8RX-025

Connect bias as under “Video IF Alignment”.

Set the fine tuning control 2/3 turn from fully counterclockwise.

Connect the synchronized sweep voltage from the sweep generator to the horizontal input of the oscilloscope for horizontal deflection.

The sweep generator output level should be terminated with its characteristic impedance, usually 50 ohms.

Use only enough sweep generator output to provide usable pattern on scope.

DUMMY ANTENNA

SWEEP GENERATOR COUPLING

SWEEP GENERATOR FREQUENCY

MARKER GENERATOR FREQUENCY

CHANNEL

CONNECT SCOPE

ADJUST

REMARKS

8. Fig. 3

Thru dummy antenna (Fig. 2) across primary of antenna matching transformer (L1).

215MC

(30MC SWP)

330MC

(05MC SWP)

13

Vert. mum, thru 10k to point 1. Low side to chassis.

A8

Adjust so that marker falls at 50% on response curve as in Fig. 3.

9. " " 505MC (05MC SWP)

199.5MC

11

" " A9 "

10. " " 195MC (05MC SWP)

181.25MC

8

" " A10 "

11. " " 85MC (05MC SWP)

93.25MC

6

" " A11 "

12. " " 75MC (05MC SWP)

77.25MC

5

" " A12 "

Adjust by means of expanding or compressing coil turns. Adjust so that marker falls at 50% as in Fig. 5.

13. " " 69MC (05MC SWP)

67.25MC

4

" " A13 "

Same as step 11.

14. " " 63MC (05MC SWP)

61.25MC

3

" " A14 "

Same as step 11.

15. " " 57MC (05MC SWP)

55.25MC

2

" " A15 "

RF IF AND MARKER ALIGNMENT FOR TUNERS 8RX-024 AND 8RX-025

Connect bias as under “Video IF Alignment”.

When checking response, tuner shield must be in place.

Connect the synchronized sweep voltage from the sweep generator to the horizontal input of the oscilloscope for horizontal deflection.

The sweep generator output level should be terminated with its characteristic impedance, usually 50 ohms.

Use only enough sweep generator output to provide usable pattern on scope.

DUMMY ANTENNA

SWEEP GENERATOR COUPLING

SWEEP GENERATOR FREQUENCY

MARKER GENERATOR FREQUENCY

CHANNEL

CONNECT SCOPE

ADJUST

REMARKS

16. Fig. 3

Thru dummy antenna (Fig. 2) across primary of antenna matching transformer (L1).

215MC

(05MC SWP)

330MC

(05MC SWP)

13

Vert. mum, thru 10k to point 3. Low side to chassis.

A16, A17, A18, A19

Adjust A16, A17 and A18 for maximum gain and symmetry with markers placed as in Fig. 4. Bandwidth is varied by changing position of C12 with respect to adjacent coil. If necessary, adjust A19 SLIGHTLY to reduce dip or peak.

17. " " 175MC (05MC SWP)

170.5MC

7

" " A20, A21 "

Adjust for maximum gain and symmetry similar to Fig. 4 with markers as indicated. Repeat step 18 retouching A18, A17 & A16, if necessary.

Replace tuner shield when checking response.

18. " " 207MC (05MC SWP)

205.25MC

12

" " A22, A23 "

19. " " 21MC (05MC SWP)

203.75MC

10

" " A24, A25 "

Make compromise adjustments of A20 and A21 for channels 15 thru 7, if necessary. Replace tuner shield when checking response.

20. " " 85MC (05MC SWP)

83.25MC

6

" " A22, A23, A24 "

Adjust for curve similar to Fig. 5. Adjusted in numerical order, the bandwidth is first affected, then the sound side of the curve, then the video side. Replace tuner shield when checking response.
INSTRUCTIONS

DUMMY ANTENNA

<table>
<thead>
<tr>
<th>SWEEP GENERATOR COUPLING</th>
<th>SWEEP GENERATOR FREQUENCY</th>
<th>MARKER GENERATOR FREQUENCY</th>
<th>CHANNEL</th>
<th>CONNECT SCOPE</th>
<th>ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>5MC (0.05MC Swp)</td>
<td>65.75MC</td>
<td></td>
<td>5</td>
<td>A25, A28, A27</td>
<td></td>
</tr>
<tr>
<td>60MC (0.10MC Swp)</td>
<td>67.35MC</td>
<td></td>
<td>4</td>
<td>A29, A30</td>
<td></td>
</tr>
<tr>
<td>65MC (0.15MC Swp)</td>
<td>68.75MC</td>
<td></td>
<td>3</td>
<td>A31, A32, A35</td>
<td></td>
</tr>
<tr>
<td>5MC (0.05MC Swp)</td>
<td>55.5MC</td>
<td></td>
<td>2</td>
<td>A24, A26, A28</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS
- Connet bias as under "Video IF Alignment".
- Remove IF R68 from L7 and terminate with 60k carbon resistor at open end.
- Connect the synchronized sweep voltage from the sweep generator to the horizontal input of the oscilloscope for horizontal deflection. The sweep generator output lead should be terminated with its characteristic impedance, usually 50 ohms.

24 GHz CHANNEL ALIGNMENT OF VHF TUNER #922-1946

DUMMY ANTENNA

<table>
<thead>
<tr>
<th>SWEEP GENERATOR COUPLING</th>
<th>SWEEP GENERATOR FREQUENCY</th>
<th>MARKER GENERATOR FREQUENCY</th>
<th>CHANNEL</th>
<th>CONNECT SCOPE</th>
<th>ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>50MC (0.05MC Swp)</td>
<td>40.5MC</td>
<td></td>
<td>45</td>
<td>A7, A30, A19</td>
<td></td>
</tr>
<tr>
<td>45.75MC</td>
<td></td>
<td></td>
<td>45</td>
<td>A7, A19</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS
- Connect bias as under "Video IF Alignment".
- Set line tuning 10-15 degrees from full clockwise. When checking response, the tuner shield must be in place.
- Connect the synchronized sweep voltage from the sweep generator to the horizontal input of the oscilloscope for horizontal deflection. The sweep generator output lead should be terminated with its characteristic impedance, usually 50 ohms.
- Use only enough sweep generator output to provide usable pattern on scope.

Oscillator Alignment for Tuner #922-1946

DUMMY ANTENNA

<table>
<thead>
<tr>
<th>SWEEP GENERATOR COUPLING</th>
<th>SWEEP GENERATOR FREQUENCY</th>
<th>MARKER GENERATOR FREQUENCY</th>
<th>CHANNEL</th>
<th>CONNECT SCOPE</th>
<th>ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>35MC (0.05MC Swp)</td>
<td>210.25MC</td>
<td></td>
<td>13</td>
<td>A40</td>
<td></td>
</tr>
<tr>
<td>30MC (0.05MC Swp)</td>
<td>205.25MC</td>
<td></td>
<td>12</td>
<td>A40</td>
<td></td>
</tr>
<tr>
<td>25MC (0.05MC Swp)</td>
<td>200.25MC</td>
<td></td>
<td>11</td>
<td>A40</td>
<td></td>
</tr>
<tr>
<td>19.9MC</td>
<td>199.25MC</td>
<td></td>
<td>10</td>
<td>A40</td>
<td></td>
</tr>
<tr>
<td>16MC (0.05MC Swp)</td>
<td>165.25MC</td>
<td></td>
<td>9</td>
<td>A40</td>
<td></td>
</tr>
<tr>
<td>13MC (0.05MC Swp)</td>
<td>131.25MC</td>
<td></td>
<td>8</td>
<td>A40</td>
<td></td>
</tr>
<tr>
<td>10MC (0.05MC Swp)</td>
<td>107.25MC</td>
<td></td>
<td>7</td>
<td>A40</td>
<td></td>
</tr>
<tr>
<td>7.5MC</td>
<td>77.25MC</td>
<td></td>
<td>6</td>
<td>A40</td>
<td></td>
</tr>
<tr>
<td>5MC (0.05MC Swp)</td>
<td>55.25MC</td>
<td></td>
<td>5</td>
<td>A40</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS
- Adjust so that marker falls at 50% on curve as in Fig. 3. Adjust A1 through A45 and A46 thru A51 by compressing or expanding coil turns.

Sweep Signal Input

- **RF Marker**
- **RF Source**

Diagrams

FIG. 2

FIG. 4

FIG. 8

General Electric Models

- **97001, 97002 ("A" Line)

PAGE 7
ALIGNMENT INSTRUCTIONS (cont)

UHF TUNER ALIGNMENT

If UHF tuner has to be removed from its mounting for alignment, extend cables and ground to main chassis.

For 43.5MC marker, connect a separate generator loosely to UHF IF input jack.

Connect bias as under "Video IF Alignment".

Connect the synchronized sweep voltage from the sweep generator to the horizontal input of the oscilloscope for horizontal deflection.

<table>
<thead>
<tr>
<th>DUMMY ANTENNA</th>
<th>SWEEP GENERATOR COUPLING</th>
<th>SWEEP GENERATOR FREQUENCY</th>
<th>MARKER GENERATOR FREQUENCY</th>
<th>CHANNEL</th>
<th>CONNECT SCOPE</th>
<th>ADJUST</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>38. Fig. 2</td>
<td>460MC 460MC</td>
<td>43.5MC 460MC</td>
<td></td>
<td></td>
<td>Vert. amp thru 10K to point Q. Low side to chassis.</td>
<td>A89</td>
<td>Adjust A89 to make 460MC marker coincide with 43.5MC marker.</td>
</tr>
<tr>
<td>39. "</td>
<td>90MC 90MC</td>
<td>43.5MC 90MC</td>
<td></td>
<td></td>
<td></td>
<td>A90</td>
<td>Adjust A90 with a plastic crochet needle or similar device to make 90MC marker coincide with 43.5MC marker. Repeat steps 38 and 39 until marker coincidence is achieved on both ends of the band.</td>
</tr>
<tr>
<td>40. "</td>
<td>550MC 550MC</td>
<td>43.5MC 550MC</td>
<td></td>
<td></td>
<td></td>
<td>A91, A92</td>
<td>Connect a short between the two feed thums nearest the crystal diode mounting. (Do not short to chassis.)</td>
</tr>
<tr>
<td>41. "</td>
<td>550MC</td>
<td>43.5MC</td>
<td></td>
<td></td>
<td></td>
<td>A93, A94</td>
<td>Use maximum gain on scope and amplifier and adjust sweep output to provide 2 inch peak to peak response curve on scope. Adjust A93 and A94 to obtain symmetrical response curve similar to Fig. 6. Remove the short from the feed thums. Remove amplifier and 220 Ohm resistor and connect coaxial cable to VHF tuner.</td>
</tr>
<tr>
<td>42. "</td>
<td>880MC 880MC</td>
<td>43.5MC 880MC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Same as step 41.</td>
</tr>
<tr>
<td>43. "</td>
<td>880MC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Use maximum gain on scope and amplifier and adjust sweep output to provide 2 inch peak to peak response curve on scope. Adjust A93 and A94 to obtain symmetrical response curve similar to Fig. 6. Remove the short from feed thums. Remove amplifier and 220 Ohm resistor and connect coaxial cable to VHF tuner. Repeat steps 40 thru 43 until symmetrical response is obtained at both 550MC and 880MC.</td>
</tr>
</tbody>
</table>

Check the response curve over the entire UHF band and check for abnormally low gain points within the tuning range. This is usually caused by insufficient oscillator injection and is checked by measuring the crystal current. To do this, disconnect UHF output cable and connect a 0-5MA meter across output cable. The crystal current should be between 0.5MA and 3MA under normal conditions. If the reading is outside these limits, adjust the oscillator injection loop position (A90) with respect to the crystal clip terminal.
RESISTANCE MEASUREMENTS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>TUBE</th>
<th>Pin 1</th>
<th>Pin 2</th>
<th>Pin 3</th>
<th>Pin 4</th>
<th>Pin 5</th>
<th>Pin 6</th>
<th>Pin 7</th>
<th>Pin 8</th>
<th>Pin 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>6C5E5</td>
<td>2.4MΩ</td>
<td>0Ω</td>
<td>7Ω</td>
<td>4.5Ω</td>
<td>±25Ω</td>
<td>±220Ω</td>
<td>0Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>12K</td>
<td>+15K</td>
<td>160K</td>
<td>±470Ω</td>
<td>0Ω</td>
<td>4.5Ω</td>
<td>±100Ω</td>
<td>0Ω</td>
<td>0Ω</td>
<td>10K</td>
</tr>
<tr>
<td>V3</td>
<td>6C66A</td>
<td>2.4MΩ</td>
<td>56Ω</td>
<td>11.5Ω</td>
<td>9Ω</td>
<td>±500Ω</td>
<td>±500Ω</td>
<td>0Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>6C66A</td>
<td>.1Ω</td>
<td>56Ω</td>
<td>32Ω</td>
<td>3Ω</td>
<td>±500Ω</td>
<td>±500Ω</td>
<td>0Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V5</td>
<td>12C78</td>
<td>+125K</td>
<td>2.7MΩ</td>
<td>0Ω</td>
<td>2Ω</td>
<td>16Ω</td>
<td>±1.3Ω</td>
<td>±25Ω</td>
<td>30K</td>
<td>0Ω</td>
</tr>
<tr>
<td>V6</td>
<td>6A66A</td>
<td>1.8Ω</td>
<td>0Ω</td>
<td>30Ω</td>
<td>27Ω</td>
<td>±500Ω</td>
<td>±500Ω</td>
<td>180Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V7</td>
<td>10C8</td>
<td>+140K</td>
<td>6.8MΩ</td>
<td>0Ω</td>
<td>22Ω</td>
<td>27Ω</td>
<td>±1.3Ω</td>
<td>±25Ω</td>
<td>1MΩ</td>
<td>22Ω</td>
</tr>
<tr>
<td>V8</td>
<td>10C8</td>
<td>+18MΩ</td>
<td>+5.5MΩ</td>
<td>0Ω</td>
<td>16Ω</td>
<td>11.5Ω</td>
<td>±15Ω</td>
<td>±15Ω</td>
<td>±1.2MΩ</td>
<td>0Ω</td>
</tr>
<tr>
<td>V9</td>
<td>7A7</td>
<td>+1.7K</td>
<td>30K</td>
<td>±130Ω</td>
<td>36Ω</td>
<td>32Ω</td>
<td>±12K</td>
<td>1.7MΩ</td>
<td>34Ω</td>
<td></td>
</tr>
<tr>
<td>V10</td>
<td>18A5</td>
<td>900K</td>
<td>36Ω</td>
<td>0Ω</td>
<td>NC</td>
<td>±1Ω</td>
<td>44Ω</td>
<td>±1.2Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V11</td>
<td>17H3</td>
<td>0Ω</td>
<td>NC</td>
<td>±1Ω</td>
<td>44Ω</td>
<td>52Ω</td>
<td>NC</td>
<td>NC</td>
<td>±1Ω</td>
<td></td>
</tr>
<tr>
<td>V12</td>
<td>1V2</td>
<td>±180Ω</td>
<td>PINS</td>
<td>2THRU 8</td>
<td>HAVE</td>
<td>INF</td>
<td>RESISTANCE</td>
<td>±180Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V13</td>
<td>9QP4</td>
<td>±1Ω</td>
<td>0Ω</td>
<td>±1.7Ω</td>
<td>±1Ω</td>
<td>±1Ω</td>
<td>±1Ω</td>
<td>±1Ω</td>
<td>±1Ω</td>
<td></td>
</tr>
</tbody>
</table>

* THIS READING WILL VARY GREATLY, 11K MINIMUM, DUE TO THE CONDITION OF THE ELECTROLYTIC CAPACITOR CONNECTED IN THE ASSOCIATED CIRCUIT.
* MEASURED FROM OUTPUT OF MJ.
* MEASURED FROM PIN 1 OF V11.
* THIS READING WILL VARY CONTROL SET FOR NORMAL OPERATION.

HORIZONTAL SWEEP CIRCUIT ADJUSTMENTS

1. Turn the set on and tune in a TV station preferably with a test pattern.
2. Connect lead from point (A) to point (B).
3. Connect a 1000Ω resistor across horizontal freq. coil (L4) from point (C) to point (D).
4. Adjust horizontal hold control so that the picture floats back and forth across the screen.
5. Remove the resistor from across L14 and adjust BI (horiz. freq. slug) so that the picture again floats back and forth across the screen.
6. Remove clip lead from point (A) to point (B). Readjust the horizontal hold control, if necessary.

POSITION OF PULLEYS & FINE TUNING PLATE ARE IN EXTREME COUNTER CLOCKWISE POSITION.

UHF DRIVE CORD STRINGING
TUBES (GENERAL ELECTRIC, SYLVANIA)

<table>
<thead>
<tr>
<th>Item No.</th>
<th>USE</th>
<th>TYPE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>RF Amp.</td>
<td>6C68</td>
<td>Note 1</td>
</tr>
<tr>
<td>V2</td>
<td>Mixer-Dac.</td>
<td>5U8</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>Video IF Amp.</td>
<td>6C68</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>2nd Video IF Amp.</td>
<td>6C68</td>
<td></td>
</tr>
<tr>
<td>V5</td>
<td>Video Output Stage</td>
<td>6C68</td>
<td></td>
</tr>
<tr>
<td>V6</td>
<td>Sound IF Amp.</td>
<td>6C68</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Some versions may use BC63A in this application.

PICTURE TUBE

<table>
<thead>
<tr>
<th>Item No.</th>
<th>G. E. Part No.</th>
<th>REPLACEMENT DATA</th>
<th>GENERAL ELECTRIC PART No.</th>
<th>SYLVANIA PART No.</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>V13</td>
<td>9QP4</td>
<td>9QP4</td>
<td>9QP4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTROLYTIC CAPACITORS

<table>
<thead>
<tr>
<th>Item No.</th>
<th>CAP VOLT.</th>
<th>G. E. Part No.</th>
<th>AEROVOX PART No.</th>
<th>DUBLEX D.getC.</th>
<th>DUBLEX D.🌏</th>
<th>DUBLEX D./todo</th>
<th>MALLORY D. Part No.</th>
<th>PYRAMID D. Part No.</th>
<th>SANICAMO D. Part No.</th>
<th>SPRAGUE D. Part No.</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>300</td>
<td>350</td>
<td>BFC-320</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>4100</td>
<td>BFC-320</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td></td>
</tr>
</tbody>
</table>

FIXED CAPACITORS

<table>
<thead>
<tr>
<th>Item No.</th>
<th>RATING</th>
<th>G. E. Part No.</th>
<th>AEROVOX PART No.</th>
<th>DUBLEX D.getC.</th>
<th>DUBLEX D.🌏</th>
<th>DUBLEX D./todo</th>
<th>CENTRALAB D. Part No.</th>
<th>ERIE D. Part No.</th>
<th>MALLORY D. Part No.</th>
<th>SPRAGUE D. Part No.</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td>350</td>
<td>BFC-320</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>4100</td>
<td>BFC-320</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td>4100</td>
<td></td>
</tr>
</tbody>
</table>

TRANSFORMERS (1)

<table>
<thead>
<tr>
<th>Item No.</th>
<th>IMPEDANCE</th>
<th>G. E. Part No.</th>
<th>ух</th>
<th>REPLACEMENT DATA</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1120J</td>
<td>1120J</td>
<td>1120J</td>
<td>1120J</td>
<td>1120J</td>
</tr>
</tbody>
</table>

SPEA

<table>
<thead>
<tr>
<th>Item No.</th>
<th>USE</th>
<th>G. E. Part No.</th>
<th>REPLACEMENT DATA</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Ant. Trans.</td>
<td>Ant. Coils</td>
<td>REL-084</td>
<td>Includes stabilising capacitor, complete with rotor.</td>
</tr>
<tr>
<td>L2</td>
<td>Ant. Coils</td>
<td>REL-084</td>
<td>Includes stabilising capacitor, complete with rotor.</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>RF Coils</td>
<td>REL-084</td>
<td>Includes stabilising capacitor, complete with rotor.</td>
<td></td>
</tr>
</tbody>
</table>

CONTROLS

<table>
<thead>
<tr>
<th>Item No.</th>
<th>RESISTANCE WATTS</th>
<th>G. E. PART No.</th>
<th>CENTRALAB PART No.</th>
<th>IRC PART No.</th>
<th>MALLORY PART No.</th>
<th>INSTALLATION NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A</td>
<td>500</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>Volume</td>
</tr>
<tr>
<td>R2</td>
<td>500</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>Volume</td>
</tr>
<tr>
<td>R3</td>
<td>500</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>Volume</td>
</tr>
<tr>
<td>R4</td>
<td>500</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>Volume</td>
</tr>
<tr>
<td>R5</td>
<td>500</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>193</td>
<td>Volume</td>
</tr>
</tbody>
</table>

Note 1: Some versions use 800MF in this application. (Part BFC-320).

Note 2: Not used in some versions.

COILS

<table>
<thead>
<tr>
<th>Item No.</th>
<th>USE</th>
<th>G. E. Part No.</th>
<th>REPLACEMENT DATA</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1st Video IF</td>
<td>REL-084</td>
<td>Includes stabilising capacitor, complete with rotor.</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>2nd Video IF</td>
<td>REL-084</td>
<td>Includes stabilising capacitor, complete with rotor.</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Series Peaking Coil</td>
<td>REL-084</td>
<td>Includes stabilising capacitor, complete with rotor.</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>Shunt Peaking Coil</td>
<td>REL-084</td>
<td>Includes stabilising capacitor, complete with rotor.</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>1st Sound</td>
<td>REL-084</td>
<td>Includes stabilising capacitor, complete with rotor.</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Some versions use part R85-084 and delete C-56.
ND DESCRIPTIONS

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>DC RES.</th>
<th>DC RES. PART No.</th>
<th>RESEARCH PART No.</th>
<th>MERT PART No.</th>
<th>MILLER PART No.</th>
<th>RCA TYPE No.</th>
<th>Ram PART No.</th>
<th>Thordarson PART No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L14</td>
<td>750</td>
<td>RLI-280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FILTER CHOKE

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>USE</th>
<th>DESCRIPTION</th>
<th>G. E. PART No.</th>
<th>REPLACEMENT DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>L15</td>
<td>200A</td>
<td>250G</td>
<td>RLY-079</td>
<td>C5040 C-2894 C-3237 2MC-1 2MC-1X</td>
</tr>
</tbody>
</table>

COMPONENT COMBINATIONS

<table>
<thead>
<tr>
<th>K1</th>
<th>Component</th>
<th>Value</th>
<th>DESCRIPTION</th>
<th>G. E. PART No.</th>
<th>REPLACEMENT DATA</th>
</tr>
</thead>
</table>

* Early production used individual units of 1Meg and 5000MEG in this application.

RECTIFIERS

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>TYPE</th>
<th>RATING</th>
<th>G. E. PART No.</th>
<th>FEDERAL PART No.</th>
<th>GENERAL PART No.</th>
<th>NATIONAL PART No.</th>
<th>MALCOY PART No.</th>
<th>RADIO RECEPTOR PART No.</th>
<th>SAKES PART No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>200A</td>
<td></td>
<td>RER-025</td>
<td>RER-023</td>
<td>RER-022</td>
<td></td>
<td></td>
<td>60SR30B</td>
<td>1302</td>
</tr>
</tbody>
</table>

* Selenium type.

FUSSES

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>TYPE</th>
<th>RATING</th>
<th>G. E. PART No.</th>
<th>LITTLEUSE PART No.</th>
<th>BUSS PART No.</th>
<th>NOTES</th>
</tr>
</thead>
</table>

* Includes clip.

CRYSTAL DIODES

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>OGM.</th>
<th>TYPE</th>
<th>G. E. PART No.</th>
<th>SYLVANIA PART No.</th>
<th>NOTES</th>
</tr>
</thead>
</table>

* A 1N61 may be used in some versions.

MISCELLANEOUS

<table>
<thead>
<tr>
<th>ITEM No.</th>
<th>PART NAME</th>
<th>G. E. PART No.</th>
<th>NOTES</th>
</tr>
</thead>
</table>

* VHF, 13 Position.

GENERAL ELECTRIC 97001, 97002 ("T" Line)