SERVICE BULLETIN FOR MODELS T-64, 509 AND 51

GENERAL

Intermediate Frequency

Picture carrier.
\qquad
\qquad
Sound carrier. \qquad 26.25 mc

Intercarrier sound system
21.75 mc
4.5 mc

Power Supply
105-125 V. 60 cycles AC
Power Consumption.
230 Watts
Model Differences. Model T-64 - Custom installation (chassis unit)
Model 509 - Wood cabinet
Model 510 - Plastic cabinet

CARE OF THE KINESCOPE WINDOW

The window in front of the picture tube is made of safety glass, hence may be cleaned by any of the conventional window cleaning processes. Abrasive or strong solvent type cleaning solutions that may scratch the glass or damage the cabinet finish, however, should be avoided.

HIGH VOLTAGE WARNING

Operation of the receiver chassis outside of the cabinet involves a shock hazard. An interlock in the line cord disconnects the power when the back cover is removed. The HIGH VOLTAGE supply, while of low current capacity, operates at a 9,000 volt potential. Exercise all normal HIGH VOLTAGE precautions while working with this equipment.

KINESCOPE HANDLING PRECAUTIONS

The kinescope housing provides adequate protection against possible tube implosure while in the cabinet. Do not expose the kinescope or handle it in any way without providing personal protection in the form of shatterproof goggles and heavy gloves. The kinescope should be handled by qualifiea personnel only.

The kinescope envelope encloses a high vacuum and with the large surface area of glass involved, the stresses set up, particularly at the front rim of the tube, are considerable. An abnormal handling stress, accidental blow at a highly stressed surface, or even a scratch on the surface of the tube could cause it to implode or collapse with destructive violence.

NON-OPERATING CONTROL ADJUSTMENTS

The "non-operating" or screw-driver adjustments normally will require an occasional minor adjustment if any circuit work or tube changing is required. A test pattern, generated either locally in the shop or obtained from a television station is recommended for best results. Normal picture contrast and brightness should be maintained during the following adjustments for best results.

Note that the following adjustments are made with the NORMAL/CIRCLE switch set at NORMAL.

Fig. 2. Rear chassts view, location
of non-operating controls.

HORIZONTAL-OSC.,-DRIVE,-LINEARITY, -CENTERING AND WIDTH ADJUSTMENTS

1. Advance the HORIZONTAL DRIVE control (clockwise) as far as possible without causing crowding of the right hand side of the test pattern or producing picture instability. Insufficient horizontal drive will cause the raster to fall short of filling the mask horizontally. Should the HORIZONTAL HOLD control fail to hold the test pattern in the normal manner, set the HORIZONTAL HOLD control in the middle of its range and adjust the HORIZONTAL OSC. ADJ. screw for horizontal sync. (See Fig. 11 for location).
2. Set the WIDTH and HORIZONTAL CENTERING controls so that the test pattern fits and centers in the horizontal dimension of the kinescope mask.
3. Set the HORIZONTAL LINEARITY control so that the test pattern is symmetrical from left to right. A slight readjustment of the HORIZONTAL DRIVE control may be necessary when making this adjustment.

HORIZONTAL CENTERING

Figure 5.
HORIZONTAL LINEARITY CONTROL MISADJUSTMENT

HORIZONTAL DRIVE

CONTROL MISADJUSTMENT

Figure 3.

WIDTH CONTROL MISADJUSTMENT

Fioure 4.

Figure 6

VERTICAL-CENTERING,-LINEARITY, AND HEIGHT ADJUSTMENTS

HEIGHT CONTROL MISADJUSTMENT

Figure 7.

VERTICAL CENTERING CONTROL MISADJUSTMENT

Figure 8.

VERTICAL LINEARITY CONTROL MISADJUSTMENT

2. Set the VERTICAL LINEARITY control for a symmetrical test pattern in the vertical dimension. A slight readjustment of the HEIGHT and VERTICAL CENTERING controls may be required when making this adjustment.

Figure 9.

Note - The sequence of "non-operating" control adjustments outlined above is suggested as a convenient method of approach and not an arbitrary procedure. Variations of the procedure is permitted to obtain the final result.

DISMANTLING FOR KINESCOPE REPLACEMENT OR ALIGNMENT ADJUSTMENTS

1. Remove the three front panel control knobs by pulling them straight from their shafts. The two dual control knobs must be removed in two pieces, removing the center unit first.
2. Remove the back cover. Note that the line cord and half of the interlock connector will come along with the back cover.
3. Disconnect the interconnecting cables and high voltage anode lead. (Snap-on connector).
4. Disconnect and remove the speaker to provide clearance for the kinescope tube mounting.
5. Release the two chassis units by removing the eight mounting screws at the base of the cabinet and pull the chassis clear of the cabinet. The KINESCOPE is now accessible for replacement or adjustment.

REMOVING THE KINESCOPE

Refer to the warning KINESCOPE HANDLING PRECAUTIONS. Follow the dismantling instructions above to expose the tube and proceed as follows:

1. Disconnect the KINESCOPE SOCKET at the base of the tube.
2. Remove the ION TRAP slipping it from the neck of the tube past the tube socket.
3. Measure the distance from the front face of the RUBBER BOOT to the front of the control plate. Keep this dimension handy for the installation of a new tube.
4. Loosen the steel band at the front rim of the tube and slip the tube with the RUBBER BOOT out through the steel band.

Fig. 10. Kinescope mounting detail.

INSTALLING THE KINESCOPE

1. Slip the RUBBER BOOT over the front rim of the kinescope and position the tube so that the anode contact is at the top and slightly to the right of the center as viewed from the screen of the tube.
2. Slip the tube through the front rim (socket first) and on through the REAR SUPPORT, DEFLECTION YOKE and FOC US COIL and seat the tube firmly against the REAR SUPPORT. If the tube fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube. Check
the distance from the front face of the RUBBER BOOT to the front of the control plate. Refer to the measurement made in step 3 above. If this dimension is off; loosen the two REAR SUPPORT MTG. screws, position the tube correctly and fasten the front rim firmly about the RUBBER BOOT.
3. The REAR SUPPORT must seat firmly against the flare of the tube and be securely anchored in place by the two REAR SUPPORT MTG. screws. Check the two SPRING CONTACTS grounding the outer coating of the kinescope tube. A high potential is developed on the outer coating of the tube if these contacts are faulty.
4. The DEFLECTION YOKE must seat firmly against the flare of the tube. Check by loosening the single DEFLECTION YOKE ADJ. screw and pushing the DEFLECTION YOKE housing forward as far as it will go. Take up on the mounting screw temporarily to hold the coil in place.
5. Slip the ION TRAP over the neck of the tube. If it is the ring type, the arrow points toward the front of the tube; if it is of the clamp type, the blue coded clamp '; toward the front.
6. Connect the tube socket and anode connector to the kinescope and turn on the receiver.
7. After allowing a few minutes for warm up, turn up the brightness control and set the ION TRAP for maximum raster brilliance, backing off the brightness control adjustment as the maximum point is approached. The ION TRAP must be rotated about the axis of the tube as well as shifted along the neck of the tube to obtain the proper setting. The arrow on the ring type ion trap will generally point at the HV anode connector when properly positioned as far as rotation is concerned, hence a rough setting may be obtained immediately with this type of trap.

With the BRIGHTNESS control set for slightly above average brilliance and the CONTRAST control full counterclockwise, adjust the FOCUS control until the line structure of the raster is clearly visible and readjust the ION TRAP for maximum raster brilliance. The final adjustment of the ION TRAP should be made with the CIRCLE/NORMAL switch set at CIRCLE for best results.
8. Set the HORIZONTAL and VERTICAL CENTERING controls at mid-position. If a corner of the raster is shadowed, it indicates that the electron beam is striking the neck of the tube. Loosen the FOCUS COIL ADJ. screws and rotate the coil about its vertical and horizontal axis until the entire raster is visible, approximately centered and with no shadowed corners. Tighten the adjustments with the coil in this position.
9. If the lines of the raster are not horizontal or square with the picture mask loosen the DEFLECTION YOKE ADJ. screw and rotate the DEFLECTION YOKE until this condition is obtained. Tighten the adjustment.
10. Follow the procedure under NON-OPERATING CONTROL ADJUSTMENTS and make any minor adjustments of the FOCUS COLL or DEFLECTION YOKE necessary to obtain the desired results. A slightly better average focus may be obtained by sliding the FOCUS COIL back and forth along the kinescope neck while adjusting the FOCUS control and watching the test pattern. The final adjustment of the focus coil should leave the raster approximately centered.

MEASUREMENT OF H.V.POTENTIAL ON KINESCOPE ANODE

The second anode potential will be approx. $9,000 \mathrm{~V}$. on a receiver that is functionir.r properly. Since the high potential for the kinescope anode is obtained from the horizontal output transformer, the "non-operating" control adjustments outlined above must be made or be known to be in proper adjustment before the H.V. measurement will have any meaning. Improper operation of the horizontal sweep circuit or circuit faults in the high voltage filter will generally account for an abnormal anode potential. If the anode potential is low, check the HORIZONTAL DRIVE adjustment outlined above.

CAUTION HIGH VOLTAGE

Do not use hand held flexible test leads when making the following measurement. Keep the hands clear of the circuit during measurement. A $9,000 \mathrm{~V}$. potential exists in this circuit. Exercise all normal high voltage precautions.

1. Connect a 50 -megohm. resistor string in series with a 200 microampere meter. Connect the free meter terminal to the chassis and the high side of the resistor string to the anode cap of the kinescope. The connection to the anode cap may be made with a fine wire slipped under the connector. Make up the resistor string with 5 megohm one or two watt resistors to provide a safety factor for voltage breakdown. If 5 -megohm resistors are used, a total of ten will be required to obtain the 50 megohms. Make the setup self-supporting and allow adequate clearance between the resistor string and chassis parts to prevent high voltage breakdown.
2. Turn on the receiver and set the BRIGHTNESS andCONTRAST controls at minimum. The microammeter will read approx. 180 microamperes or $9,000 \mathrm{~V}$. at the kinescope anode. The anode potential is measured in this manner (CONTRAST and BRIGHTNESS controls at minimum; meter current approx. 200 microamperes) to simulate the kinescope load on the high voltage power supply.

ALIGNMENT PROCEDURE

Note.- The following alignment adjustments do not require the use of the kinescope tube. It is recommended that the tube be removed if extensive alignment adjustments are to be made.

CAUTION - Removal of the kinescope tube exposes the HIGH VOLTAGE anode connector contact. Keep this lead and contact clear of personnel servicing equipment and grounded objects on the service bench. Exercise all normal high voltage precautions while working with the exposed units. See Figures 14 and 16 for high voltage points on the power supply chassis.

EQUIPMENT REQUIRED

Signal generator covering 4 mc to 30 mc
Signal generator covering 40 mc to 215 mc
Electronic voltmeter
Two 150 -ohm carbon resistors
One .01 mfd .600 V . tubular paper condenser

F-M SOUND CHANNEL I-F ALIGNMENT

1. Connect the low frequency signal generator output between the control grid (pin 1) of the 6AU6 1st VIDEO AMP. tube ($\mathrm{V}-9$) and chassis ground.
2. Connect the electronic voltmeter between pin 7 of the 6AL5 FM DET. tube ($\mathrm{V}-16$) and chassis ground.
3. With the signal generator (unmodulated) set at 4.5 mc , set the 4.5 MC LIMITER GRID ADJ. and FM DET. PRI. ADJ. for maximum d-c voltage as measured by the electronic voltmeter. Adjust the limiter grid coil ($\mathrm{L}-14$) before adjusting the $\mathrm{f}-\mathrm{m}$ detector transformer ($\mathrm{T}-1$) primary. Use just enough signal generator output to obtain approximately one volt at the electronic voltmeter.
4. Connect the electronic voltmeter across the $1,000 \mathrm{mmf}$ condenser ($\mathrm{C}-17$) at the output of the $\mathrm{f}-\mathrm{m}$ detector stage and adjust the FM DET. SEC. ADJ. of the f-m detector transformer ($\mathrm{T}-1$) for the null.
5. Shift the frequency of the signal generator either side of 4.5 mc and touch up the FM DET. PRI. ADJ. for approximately equal peaks. Use just enough signal generator output to obtain one volt peaks for best results.
6. After completing the alignment procedure and placing the receiver in operation again, carefully tune in a TV test pattern and adjust the 4.5 MC LIMITER GRID ADJ. for maximum vertical wedge definitions.

I-F AMPLIFIER ALIGNMENT

1. Connect the electronic voltmeter across resistor R-57 in the plate circuit of the 6AL5 VIDEO DET. tube (V-8). This resistor is located on the terminal strip between the 6AU6 4th IF AMP. tube ($\mathrm{V}-7$) and the 6AU6 1st VIDEO AMP. tube ($\mathrm{V}-9$).
2. Connect the output of the low frequency signal generator to the receiver's antenna input through two $150-\mathrm{ohm}$ carbon resistors, one connected in each conductor of the transmission line.
3. Set the signal generator output (unmodulated) to develop two volts at the electronic voltmeter and adjust the five i-f
amplifier coils, according to the following chart, for maximum d-c voltage as measured by the electronic voltmeter. Readjust the signal generator output as required to maintain the two volt potential at the electronic voltmeter.

I-F AMPLIFIER ALIGNMENT CHART

Signal Generator Frequency (No Modulation)	Adjustment (Refer to Fig. 11)	Stage Adjusted
26.2 mc	26.2 MC IF ADJ.	Mixer
25.5 mc	25.5 MC IF ADJ.	1st IF amp.
23.5 mc	23.5 MC IF ADJ.	2nd IF amp.
23 mc	23 MC IF ADJ.	3rd IF amp.
22.2 mc	22.2 MC IF ADJ.	Video detector

4. Set the signal generator at 26.2 mc . Reduce the signal generator output until the electronic voltmeter reads one volt and readjust the 26.2 MC IF ADJ. for maximum output voltage at the electronic voltmeter. Readjust signal generator output to maintain a one volt peak for this adjustment.
5. Check the i-f amplifier frequency response by tuning the signal generator from 21 mc through 26.25 mc and observing the change in d-c voltage at the electronic voltmeter. If the signal generator output is set for an electronic voltmeter reading of 1.5 volts at the peak i-f amplifier response, the d-c voltage should not drop below one volt between the two peaks normally obtained with this i-f amplifier. If the response is unsatisfactory, repeat steps 3 and 4 or try slight modifications of the recommended settings to obtain the desired response. Avoid resonating the coils with the iron core at the bottom end of the coil form. (Adjustment screw near limit of its travel.) Check the two carrier i-f responses, 21.75 mc and 26.25 mc . The 21.75 mc response will be approximately 20 db below the peak response (Approx. 0.15 volt) and the 26.25 mc response will fall approximately 6 db . below the peak (Approx. 0.4 volt). Refer to Fig. 12.

The average i-f amplifier sensitivity when feeding the signal generator output through the antenna input as described above will run approximately 600 to 3,000 microvolts for the one volt d-c peak measured across resistor R-57. (Receiver's oscillator operating on channel 6).

STATION CHANNEL ALIGNMENT

1. Due to the broad frequency response of the i-f amplifier, it is necessary to use a 24.5 mc signal generator or oscillator (unmodulated) as a beat frequency oscillator (BFO) in order to locate the center frequency of the i-f amplifier response for the correct local oscillator adjustment. This "BFO" generator should be loosely coupled by means of a wire from the generator output placed in close proximity to the 6AL5 VIDEO DET. tube ($\mathrm{V}-8$).
2. Connect the high frequency signal generator output to the receiver's antenna transmission line through the two 150 -ohm carbon resistors, one connected in each conductor of the transmission line.
3. Connect the electronic voltmeter across resistor R-57 in the plate circuit of the 6AL5 VIDEO DET. tube ($\mathrm{V}-8$) as for the i-f amplifier alignment.

Fig. 11. Top view, alignment points.
4. Each channel may be aligned independently without affecting the alignment of the others. Alignment of the individual channels is carried out as follows:
(a) Set the FINE TUNING control condenser in the center of its capacity range.
(b) Press the channel button corresponding to the channel number to be aligned.
(c) Set the "BFO" generator at 24.5 mc (No modulation).
(d) Set the high frequency signal generator per the alignment chart. (No modulation).
(e) Clip on a .01 mfd condenser between pin 2 of the

10BP4 kinescope ($\mathrm{V}-19$) and pin 1 of the 6AU6 AUDIO AMP tube (V-17) and adjust the OSC. ADJ. trimmer corresponding to the channel being aligned for a rough audio beat note, using the speaker as a detector. The connection at pin 2 of the kinescope can be made at the terminal strip under the chassis provided for the socket leads of this tube.
(f) Disconnect the .01 mfd condenser, shut off the "BFO" signal generator, and adjust the MIXER ADJ. and RF AMP ADJ. trimmers for maximum d-c voltage as measured by the electronic voltmeter. Use just enough signal generator output to obtain approximately one volt at the electronic voltmeter. This completes the alignment of any one channel, and all others are to be treated in the same manner.

CHANNEL ALIGNMENT CHART

$\begin{aligned} & \text { Channel } \\ & \text { No. } \end{aligned}$	Channel Freq. (mc)	H.F. Signal Generator Freq. (No modulation)	Channel No.	Channel Freq. (mc)	H.F. Signal Generator Freq. (No modulation)
2	54-60	57 mc	8	180-186	183 mc
3	60-66	63 mc	9	186-192	189 mc
4	66-72	69 mc	10	192-198	195 mc
5	76-82	79 mc	11	198-204	201 mc
6	82-88	85 mc	12	204-210	207 mc
7	174-180	177 mc	13	210-216	213 mc

The overall sensitivity for the receiver will run approximately 100 to 200 microvolts for one volt DC at resistor R-57 when measured in the above manner.

CARRIER vs I-F FREQUENCY CHART

Channel No.	Channel Freq. (mc)	Picture Carrier Freq. (me)	Sound Carrier Freq. (mc)	$\begin{aligned} & \text { Receiver } \\ & \text { Osc. } \\ & \text { Freq. (mc) } \end{aligned}$	$\begin{gathered} \text { Picture } \\ \text { IF } \\ \text { Freq. }(\mathrm{mc}) \end{gathered}$	$\begin{aligned} & \text { Sound } \\ & \text { IF } \\ & \text { Freq. (mc) } \end{aligned}$	$\begin{gathered} \text { Picture IF } \\ \text { less } \\ \text { Sound IF (mc) } \end{gathered}$
2	54-60	55.25	59.75	81.5	26.25	21.75	4.5
3	60-66	61.25	65.75	87.5	26.25	21.75	4.5
4	66-72	67.25	71.75	93.5	26.25	21.75	4.5
5	76-82	77.25	81.75	103.5	26.25	21.75	4.5
6	82-88	83.25	87.75	109.5	26.25	21.75	4.5
7	174-180	175.25	179.75	201.5	26.25	21.75	4.5
8	180-186	181.25	185.75	207.5	26.25	21.75	4.5
9	186-192	187.25	191.75	213.5	26.25	21.75	4.5
10	192-198	193.25	197.75	219.5	26.25	21.75	4.5
11	198-204	199.25	203.75	225.5	26.25	21.75	4.5
12	204-210	205.25	209.75	231.5	26.25	21.75	4.5
13	210-216	211.25	215.75	237.5	26.25	21.75	4.5

Fis. 13. Top view, recetver chassis, component location.

Fig. 14. Top view, power supply chassis, componew location
$\mathrm{C}_{50} \mathrm{C}_{48} \mathrm{C}_{49} \mathrm{R}_{54} \mathrm{R}_{58} \mathrm{~L}_{25} \mathrm{C}_{16} \mathrm{C}_{52} \mathrm{C}_{53} \mathrm{~L}_{26} \mathrm{R}_{62} \mathrm{~L}_{27} \mathrm{C}_{86}^{*} \mathrm{C}_{92} \mathrm{C}_{54} \mathrm{C}_{56} \mathrm{~L}_{28} \mathrm{R}_{67} \mathrm{R}_{29} \mathrm{R}_{71} \mathrm{~L}_{29} \mathrm{R}_{69} \mathrm{R}_{72} \mathrm{R}_{30} \mathrm{C}_{80}$

Ref. No.
Description
RESISTORS (Cont.)

R-115
R-116
R-118
R-119
R-120
R-121
R-122
R-123
R-125
R-127

Hallicrafter's
Part Number

Ref. No
Description
Hallicrafter's
Part Number

Tol. on carbon resistors -- M-20\%, K - 10%, J - 5%
25B768
RC 30AE 222 K
RC 20AE475M
RC 30AE 200J
RC30AE 391J
RC40AE470K
RC 20 AE 473 K
RC 30 AE 047 K
RC 30 AE 223 K
24BG400E

TRANSFORMERS AND COILS
T-1 Transformer, ratio detector 50B
T-2 Transformer, audio output
(Part of speaker assy.)
T-4
Transformer, power
55C 113-1
T-5
52C 170-2

L-1,5 Coil, r-f amp. and mixer stages 51 A 1048
L-2 Coil, r-f amp. stage 51A1051
L-3 Coil, r-f amp. stage 51A1050
L-4 Coil, r-f amp. stage 51A1049
L-6 Coil, mixer stage $\quad 51 \mathrm{~A} 1047$
$\mathrm{L}-8,13 \quad$ Coil, mixer stage \quad 51A1046
L-9,31 Coil, r-f choke (Red color code) 53B008
L-10 Coil. osc. stage 51 A 1044
L-11 Coil, osc. stage 51 A1043
L-12 Coil, osc. stage 51A1042
L-14
L-15
L-16
L-17
$\begin{array}{ll}\text { Coil, } 4.5 \mathrm{mc} \text {. sound trap } & 51 \mathrm{~B} 1132 \\ \text { Coil, focus } & 51 \mathrm{~A} 1065\end{array}$
Deflection yoke 53B140
L-18 Coil, r-f choke (Blue color code)53A009
L-19,20, Coil, i-f amplifier 50A372-1
2,23
L-24
L-25
L-26
L-27
L-28
L-29
L-30
L-32
L-33
L-34
$\begin{array}{ll}\text { Coil, video peaking } & \text { 51A1079 } \\ \text { Coil, video peaking } & \text { 51A1080 }\end{array}$
Coil, video peaking - 51A1130
Coil, video peaking 51A1082
Coil, video peaking 51A1131
Coil, video peaking $\quad 51 \mathrm{~A} 1129$
Coil, horizontal sweep osc. 50B411
$\begin{array}{ll}\text { Coil, heater choke (Tube V-3) } & \text { 53A133 } \\ \text { Coil, wIDTH control } & \text { 51B1072 }\end{array}$
oil
51B1072
LINE ARITY control
TUBES, RECTIFIERS AND FUSES
\#V-1,2
$\mathrm{V}-3$
$\mathrm{~V}-4,5,6,7$,
$9,15,17$
$\mathrm{~V}-8,12,16$

*V-10
**V-11

V-13,14
V-18
V-19
V-20
V-21
Type 6AG5: RF amp. and mixer 90X6AG5
Type, 6C 4: oscillator $90 \times 6 \mathrm{C} 4$
Type 6AU6: 1st, 2nd, 3rd, 4th IF 90X6AU6 amp.; 1st video amp.; audio
IF amp.; and audio amp.
Type 6AL5: video det.; FM det.; 90x6AL5 and sync. disc.
Type 6AQ5: 2nd video amp. 90X6AQ5
Type 12AU7: sync. separator; 90X12AU7 DC restorer; and sync. phase inverter
Type 6SN7GT: horizontal osc. 90X6SN7GT and vertical osc. \& amp.
Type 6K6GT: audio output
Type 10BP4: kinescope
90X10BP4
Type 1B3GT: high voltage 90×1 B3GT
$\mathrm{V}-22 \quad$ Type 5 V 4 G : reaction scanning 90 X 5 V 4 G
V-23 Type 5U4G: low voltage rectifier90X5U4G
F-1 Fuse, 1/4 ampere, type 3AG 39A334
\# Some sets use a type 6AK5 tube.

* Some sets use a type 6V6GT tube.
** Some sets use a type 6SN7GT tube.

SO-1
SO-2
SO-3
SO-4
SO-5
SO-6

LS-1
LS-1

PL-8

PLUGS AND SOCKETS

PL-1
PL-2
PL-3
PL-5
PL-6
PL-7
PL-8

Plug, speaker (Part of speaker ass'y)	
Plug, 10BP4 anode	10A300
Line cord and plug PL-4	87A1668
Plug, 8 prong (Power)	10A239
Shell, plug (Used on PL-5)	69A207
Plug, 9 prong (Power)	10A299
Shell, plug (Used on PL-6)	10A324
Plug, 2 prong (Focus coil)	10A301
Plug, 4 prong (Deflection yoke)	10A302
Shell, plug (Used on PL-7 and PL-8)	10A305
Socket, 5 pin (Speaker)	10A303
Socket, a-c power	10A286
Socket, 8 pin (Power)	6A296
Socket, 9 pin (Power)	6A313
Socket, 2 pin (Focus coil)	10A295
Socket, 4 pin (Deflection yoke)	10A296
Shell, socket (Used on SO-5 and SO-6)	10A294
Socket, octal (Tube)	6A296
Socket,miniature (For tubes V $1,2,3$)	6 A297
Socket, miniature (Tube)	6A308
Socket, miniature, 9 pin (Tube V-11)	6A311
Socket, octal (Tube V-21)	6A177
Socket, kinescope	6B309
Receptacle, fuse	6 A 287

MISCELLANEOUS

Channel selector ass'y com-
41X12103
plete (Includes PB switch, trimmers, coils, etc.)
Speaker assembly (Includes $\quad 85 \mathrm{C} 079$ connector PL-1)
Rubber strip, kinescope
16B138 mounting (Model T-64)
Rubber boot, kinescope mount-
16E137 ing (Models 509 \& 510)
Clamp, kinescope mounting 76D406
Bracket, kinescope clamp $\quad 67 \mathrm{C} 860$ support
Bracket, rear kinescope support 67B845
Bracket, VERT. LINEARITY 67A863
and HEIGHT control mtg.
Rear support (Deflection yoke 67C870 housing)
Bracket, focus coil 67B858
Bracket, brace 67C869
Shield, tube (V-18) 69A094
Insert, rubber (Focus coil) 16A134
Ion trap
Plate, bakelite (Mtg. for tube 21B083-2
8B823
Glass, safety (clear)
22D249
(Model 509)
Escutcheon, kinescope 7D110
(Model 509)
Glass, safety (clear) 22D232
(Model 510)
Escutcheon, panel (Model 509) 7C 111
Knob, VERTICAL \& VOLUME 15B147
(Models T-64, 510)
Knob, VERTICAL \& VOLUME 15B147-2 (Model 509)
Knob, HORIZONTAL \& BRIGHT- 15B146 NESS
Knob, CONTRAST
15B148 (Models T-64,510)
Knob, CONTRAST (Model 509) 15B148-2
Knob, pushbutton and FINE 17A041-2
TUNING
Switch, toggle DPDT,
60A347

FRONT APRON
BOTTOM VIEW OF POWER SUPPLY CHASSIS

alternates for tubes v-io a v-II

NOTES-
I. SOCKET VIEWS ARE BOTTOM VIEWS.
2. ALL VOLTAGES ARE MEASURED between tube sociket terminals a chassis with zero signal input.
3. LINE VOLTAGE-II7 V. AC.
4. ALL VOLTAGES SHOWN ARE DC UNLESS OTHERWISE SPECIFIED.
5. DC VOLTAGES SHOWN WERE MEASURED WITH AN ELECTRONIC VOLTMETER.
6. "NC"NO CONNECTION. VOLTAGE SHOWN FOR THIS TERMINAL ONLY WHEN TERMINAL IS USED
7. "NR" NOT READABLE. VOLTAGES MEASURED AT THESE TERMINALS GENERALLY MEANINGLE
. ALL VOLTAGES ON V-IG WERE TAKEN AT TIE POINTS OF TUBE SOCKET LEADS.
9. CIRCLE/NORMAL SWITCH SET AT NORMAL.
10. OPERATING CONTROLS WERE SET FOR A NORMAL PICTURE UNLESS OTHERWISE SPECIFIEL
II. NON-OPERATING CONTROLS SET FOR NORMAL OPERATION.
12. MEASUREMENT OF 2ND ANODE POTENTIAL AT IOBP4 IS RECOMENDED FOR CHECK ON IB3
13. \square SPACE PROVIDED. FOR SERVICE METER READING.

NR

Fig. 18. Schematic diagram.

Fi£. 18. Schemattc dia£ram.

