RCA-5826 is a television camera tube recommended for studio use and other applications where the lighting can be controlled. It has exceptional sensitivity combined with a spectral response approaching that of the eye, and good stability over the range of light levels usually encountered with artificial illumination. Commercially acceptable pictures can be obtained with incident light levels greater than about 35 foot-candles.

The photocathode utilized in the 5826 is characterized by a spectral response having high blue sensitivity, high green sensitivity, good red sensitivity, and practically no infrared sensitivity. This latter characteristic of the response prevents any color-masking by infrared, and thus permits portrayal of colors in nearly their true tonal gradation.

Because of its spectral characteristics and exceptional sensitivity, the 5826 can be substituted to advantage for the type 5655. Requiring a minimum light level only 0.15 of that required by the 5655, the 5826 makes it possible to reduce substantially the amount of illumination as well as air conditioning needed in the studio. Furthermore, the 5826 permits considerably improved gray-scale rendition of color while retaining the same good signal-to-noise ratio of the 5655.

The relatively small size of the 5826 lends itself to use in comparatively light-weight, portable television cameras, and facilitates the use of a telephoto lens with such cameras.

For general outdoor pickup use, RCA-5820 is recommended.

PRINCIPLES OF OPERATION

The 5826 has three sections—an image section, a scanning section, and a multiplier section, as shown in Fig.1.

Image Section

The image section contains a semi-transparent photocathode on the inside of the face plate, a grid to provide an electrostatic accelerating field, and a target which consists of a thin glass disc with a fine mesh screen very closely spaced to it on the photocathode side. Focusing is accomplished by means of a magnetic field produced by an external coil, and by varying the photocathode voltage.

Light from the scene being televised is picked up by an optical lens system and focused on the photocathode which emits electrons from each illuminated area in proportion to the intensity of the light striking the area. The streams of electrons are focused on the target by the magnetic and accelerating fields.

On striking the target, the electrons cause secondary electrons to be emitted by the glass. The secondaries thus emitted are collected by the adjacent mesh screen which is held at a definite potential of about 2 volts with respect to target-voltage cutoff. Therefore, the potential of the glass disc is limited for all values of light and stable operation is achieved. Emission of the secondaries leaves on the photocathode side of the glass a pattern of positive charges which corresponds with the pattern of light from the scene being televised. Because of the thinness of the glass, the charges set up a similar pattern on the opposite or scanned side of the glass.

Scanning Section

The opposite side of the glass is scanned by a low-velocity electron beam produced by the electron gun in the scanning section. This gun contains a thermionic cathode, a control grid (grid No.1), and an accelerating grid (grid No.2). The beam is focused at the target by the magnetic field of an external focusing coil and the electrostatic field of grid No.4.

Grid No.5 serves to adjust the shape of the decelerating field between grid No.4 and the target in order to obtain uniform landing of electrons over the entire target area. The electrons stop their forward motion at the surface of the glass and are turned back and focused into a five-stage signal multiplier, except when they approach the positively charged portions of the pattern on the glass. When this condition occurs,
they are deposited from the scanning beam in quantities sufficient to neutralize the potential pattern on the glass. Such deposition leaves the glass with a negative charge on the scanned side and a positive charge on the photocathode side. These charges will neutralize each other by conductivity through the glass in less than the time of one frame.

Alignment of the beam from the gun is accomplished by a transverse magnetic field produced by an external coil located at the gun end of the focusing coil.

Deflection of the beam is accomplished by transverse magnetic fields produced by external deflecting coils.

The electrons turned back at the target form the return beam which has been amplitude modulated by absorption of electrons at the target in accord with the charge pattern whose more positive areas correspond to the highlights of the televised scene.

Multiplier Section

The return beam is directed to the first dynode of a five-stage electrostatically focused multiplier. This utilizes the phenomenon of secondary emission to amplify signals composed of electron beams. The electrons in the beam impinging on the first dynode surface produce many other electrons, the number depending on the energy of the impinging electrons. These secondary electrons are then directed to the second dynode and knock out more new electrons. Grid No.3 facilitates a more complete collection by dynode No.2 of the secondaries from dynode No.1. The multiplying process is repeated in each successive stage, with an ever-increasing stream of electrons until those emitted from dynode No.5 are collected by the anode and constitute the current utilized in the output circuit.

The multiplier section amplifies the modulated beam about 500 times. The multiplication so obtained increases the signal-to-noise ratio of the tube and also permits the use of an amplifier with fewer stages. The gain of the multiplier is sufficiently high so that the limiting noise in the use of the tube is the random noise of the electron beam multiplied by the multiplier stages. This noise is larger than the input noise of the video amplifier.

It can be seen that when the beam moves from a less positive portion on the target to a more positive portion, the signal output voltage across the load resistor (R50 in Fig.2) changes in the positive direction. Hence, for highlights in the scene, the grid of the first video-amplifier stage swings in the positive direction.

DATA

General:

Heater, for unipotential cathode: 6.3 ± 10% volts
Current. 0.6 ampere
Direct current: 20 µA
Photocathode, semi-transparent: See Fig.6
Useful Size of Rectangular Image (4 x 3 aspect ratio). 1.6" max. Diagonal orientation of Rectangular Image — Proper orientation is obtained when the V-scan is essentially parallel to the plane passing through center of face plate and pin No.7 of the shoulder base.

Multiplier Section

Photocathode Voltage. -550 max. volts
Photocathode Illumination. 50 max. ft-c
Operating Temperature of Any Part of Bulb. 65 max. °C
Operating Temperature of Bulb at Large End of Tube (Target Section). 45 min. °C
Temperature Difference Between target section and any part of bulb hotter than target section. 5 max. °C
Grid No. 6 Voltage. -550 max. volts
TARGET VOLTAGE:
Positive value 50 max. volts
Negative value -50 max. volts
GRID-No. 5 VOLTAGE 150 max. volts
GRID-No. 4 VOLTAGE 300 max. volts
GRID-No. 4 VOLTAGE 400 max. volts
GRID-No. 2 & DYNODE NO. 1 VOLTAGE 350 max. volts
GRID-No. 1 VOLTAGE 350 max. volts
Negative bias value 125 max. volts
Positive bias value 0 max. volts
PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode 125 max. volts
Heater positive with respect to cathode 10 max. volts
ANODE-SUPPLY VOLTAGE** 1500 max. volts
VOLTAGE PER MULTIPLIER STAGE 300 max. volts

Typical Operation and Characteristics:
Photocathode Voltage (Image Focus) -300 to -500 volts
Grid-No. 5 Voltage (Accelerator) -240 to -400 volts
Target Voltage 0 volts
Grid-No. 4 Voltage (Decelerator) 0 to 100 volts
Grid-No. 4 Voltage (Beam Focus) 160 to 240 volts
Output voltage 225 to 330 volts
Grid-No. 2 & Dynode No. 1 Voltage 300 volts
Grid-No. 1 Voltage (For picture cutoff) -45 to -115 volts
Dynode No. 2 Voltage 600 volts
Dynode No. 3 Voltage 800 volts
Dynode No. 4 Voltage 1000 volts
Dynode No. 5 Voltage 1200 volts
Anode Voltage 1250 volts
Anode Current 50 ma
Target Temperature Range (see text) 45 to 60°C
Highlight Illumination on Photocathode for Maximum Signal Output:
With 280°K Tungsten Illumination, Daylight, or White Fluorescent Illumination, 0.04 ft-c
Ratio of Peak-to-Peak Highlight Video-Signal Current to RMS Noise Current (Approx.) 70
Minimum Peak-to-Peak Blanking Voltage 10 volts
Field Strength at Center of Focusing Coil 75 gausses
Defocusing-coil Current (Approx. for assembly listed below) 75 ma
Deflecting-coil Current (Approx. for assembly listed below) in (HORIZONTAL) Peak to peak 625 ma
Vertical (Peak to peak) 290 ma
Alignment-coil Current (Approx. for assembly listed below) 0 to 30 ma

Components:
Deflecting-coil Assembly (includes keyed jumbo annular 7-pin socket) RCA Type No. 201D75
Focus-assembly RCA Type No. 201D75
Alignment-assembly RCA Type No. 204D75
Hor. Deflection Output Transformer RCA Type No. 204H1
Ver. Deflection Output Transformer RCA Type No. 204V2

* Ratio of dynode voltages is shown under Typical operation.
0 Adjustable from -5 to +5 volts with blanking voltage off.
00 Taps at 0, 30, 60, and 90 volts are recommended. Set at voltage giving most uniform resolution and signal throughout picture area.
Adjust to give the most uniformly shaded picture near maximum signal.
° Direction of current should be such that a north-seeking pole is attracted to the image end of the focusing coil.

INSTALLATION
The end-base pins of the 5826 fit the diheptal 14-pin socket; the annular-base pins fit the keyed jumbo annular 7-pin socket, which is part of the deflecting-coil assembly having RCA Type No. 201D75.

The 5826 has three complementary guides for inserting the tube correctly in the annular socket, i.e., the large pin (No. 7) on the annular base, the white radial line on face of bulb, and a white longitudinal line on neck. Designers of equipment should position the annular base so that pin No. 7 of the annular base, and the white radial line when viewed from the face end of the tube, will be at the bottom of the face after the tube has been correctly inserted in the annular socket. The 5826 is installed by inserting the diheptal-base end of the tube through the coil assembly and then turning the tube until the annular-base pins, keyed by pin No. 7, can be inserted in the annular socket. Proper insertion aligns the white radial line on the face with center of the slot in the annular socket, and makes the longitudinal line on the neck visible through the sight hole in the deflecting-coil assembly. The annular-base pins are then pushed into their socket, and the diheptal socket is put on the 14-pin base.

Proper orientation of the annular socket with respect to the horizontal-deflecting field is essential, and is obtained when the plane which is perpendicular to the plane of the annular socket and which passes through the center of the annular socket and the center line between pins 3 and 4 of the annular base is at right angles to the horizontal scanning field. This orientation prevents the damper bars in the target assembly from shorting in the picture when the target is normally scanned, and also minimizes beat-pattern effects by placing the sides of the mesh holes at an angle of 45° with respect to the horizontal scanning lines.

The damper bars serve to minimize microphonics and consist of two metal strips between the mesh-screen portion and the glass-disc portion of the target. They are positioned so that, with the orientation described above, they appear parallel to the horizontal scanning lines when the target is over-scanned, but do not show in the picture with normal scanning of the target.

The operating position of the 5826 should preferably be such that any loose particles in the neck of the tube will not fall down and strike or become lodged on the target. Therefore, it is recommended that the tube never be operated in a vertical position with the diheptal-base end up nor in any other position where the axis of the tube with base up makes an angle of less than 20° with the vertical through the center of the base.

The operating temperature of any part of the glass bulb should never exceed 65°C, and no part of the bulb at the large end of the tube (target section) should ever fall below 45°C during operation. The temperature of the target is essentially the same as that of the adjacent glass bulb and can, therefore, be determined by measuring the temperature of the glass bulb adjacent to the target. It is recommended that the temperature of the entire bulb be held between
Fig. 2—Voltage Dividers for Type 5826 with Connections for: Alignment Coil, RCA Type No. 204D75, and Focusing Coil, RCA Type No. 202D75.

O = Terminals on Deflecting-Coil Assembly, RCA Type No. 201075. These terminals are connected to annular socket within the Assembly as shown, except for those marked G, A, and C. G is connected to yoke shielding. A and C are connected to heater terminals on face of annular socket. Other terminals on the Assembly not shown above are indicated in Figs. 3 and 4.
45° and 60°C. Operation at too low a temperature will be characterized by the appearance of a rapidly disappearing "sticking picture" of opposite polarity from the original when the picture is moved. Operation at too high a temperature will cause loss of resolution and possibly permanent damage to the tube. Resolution is regained by waiting for the temperature to drop below 65°C. No part of the bulb should run more than 5° hotter than the target section to prevent cesium migration to the target. Such migration will result in loss of resolution and in probable permanent damage to the tube. Like other photosensitive devices employing cesium, the 5826 may show fluctuations in performance from time to time. Strict observance of the above recommendations with respect to operating temperature will not completely eliminate these variations but will greatly improve the stability of the characteristics during the life of the tube.

When the equipment design or operating conditions are such that the maximum temperature rating or maximum temperature difference as given under Maximum Ratings will be exceeded, provision should be made to direct a blast of cooling air from the dieheptal-base end of the tube along the entire length of the bulb surface, i.e., through the space between the bulb surface and the surrounding deflecting coil and its extension. Any attempt to effect cooling of the tube by circulating even a large amount of air around the focusing coil will do little good, but a small amount of air directly in contact with the bulb surface will effectively drop the bulb temperature. For this purpose, a small blower is satisfactory, but it should be run at low speed to prevent vibration of the 5826 and the associated amplifier equipment. Unless vibration is prevented, distortion of the picture may occur.

Ordinarily, the temperature in a camera equipped with a blower will not exceed 65°C, except in very hot weather or unless the target heater is left on accidentally for a long period.

To keep the operating temperature of the large end of the tube from falling below 45°C, some form of controlled heating should be employed. Ordinarily, adequate heat will be supplied by the focusing coil, deflecting coils, and associated amplifier tubes so that the temperature can be controlled by the amount of cooling air directed along the bulb surface. If, in special cases, a target heater is required, it should fit snugly between the focusing coil and the bulb near the shoulder of the tube. Such a target heater is included in the RCA Deflecting-Coil Assembly.

The lens system used with the 5826 should be designed according to basic optical principles and should incorporate an iris to control the amount of light entering the television camera lens. Because of the relatively small face diameter of the 5826, the use of a telephoto lens is facilitated. The lens holder should have all inside surfaces finished in matte black to prevent internal reflections from reaching the photocathode. Under almost all conditions, the use of a lens shade is beneficial.

A mask having a diagonal or diameter of 1.6 inches should always be used on the photocathode to set limits for the maximum size of scan, and to reduce the amount of light reaching unused parts of the photocathode.

For the high dc voltages required by the 5826, the use of two pulse supplies for which the plate voltage is provided by a well-regulated, 330-volt, B-supply may be used. Each of these supplies should be actuated by the horizontal driving pulse which is obtained from the synchronizing generator. One of the pulse supplies should be capable of furnishing 1250 volts with an output current of 1 milliampere for the multiplier section; the other pulse supply should be capable of furnishing -500 volts with an output current of 1 milliampere for the image section. In addition to supplying the plate voltage and current for the pulse supplies, the 330-volt

LEGEND FOR FIG. 2

C1	C2	0.05 µf, 1600 v working voltage			
C3	0.01 µf mica, 1600 v working voltage				
C4	0.001 µf mica, 1000 v working voltage				
C5	0.001 µf mica, 600 v working voltage				
C6	0.10 µf mineral-oil impregnated, 1600 v working voltage				
C7	C8	C9	C11		
C12	C13	C14	0.001 µf mica, 400 v working voltage		
C10	1 µf, 800 v working voltage				
R1	47000 ohms, 1/2 watt				
R2	R3	R4	22000 ohms, 1/2 watt		
R5	27000 ohms, 1/2 watt				
R6	100 ohms, 1/2 watt, wire wound				
R7	20 ohms, 1 watt, wire wound				
R8	2500 ohms, 25 watts				
R9	750 ohms, 10 watts				
R10	5100 ohms, 1/2 watt				
R11	5100 ohms, 2 watts				
R12	510 ohms, 1/2 watt				
R13	150000-ohm potentiometer, 1/2 watt				
R14	820000 ohms, 1/2 watt				
R15	100000-ohm potentiometer, 1 watt				
R16	150000 ohms, 1/2 watt				
R17	100000-ohm potentiometer, 1 watt				
R18	560000 ohms, 1/2 watt				
R19	R20	R21	200000 ohms, 1/2 watt		
R22	250000-ohm potentiometer, 1 watt				
R23	1800000 ohms, 1/2 watt				
R24	3900000 ohms, 1/2 watt				
R25	1100000 ohms, 1/2 watt				
R26	500000-ohm potentiometer, 1 watt				
R27	1100000 ohms, 1/2 watt				
R28	5600000 ohms, 1/2 watt				
R29	470000 ohms, 1/2 watt				
R30	2000000 ohms, 1/2 watt				
R31	R32	1000000 ohms, 1/2 watt			
R33	R34	R36	R37		
R39	R40	R41	R42	R43	2000000 ohms, 1/2 watt
R35	500000 ohms, 1/2 watt				
R38	1000000 ohms, 1/2 watt				
B-supply should also provide an output current of 90 milliamperes for the focusing and alignment coils and for the voltage divider which is used to supply the voltages for the electrodes in the scanning section of the 5826.

Voltage dividers to provide the required operating voltages for the various electrodes of the 5826 are shown in Fig. 2. It is to be noted that the blocking capacitor C6 should be of the mineral-oil impregnated type to minimize capacitor leakage which will introduce disturbing effects into the picture.

In designing a voltage divider for the multiplier stages of the 5826, engineers should recognize that the dc output of individual 5826's of the multiplier as the beam current is increased. This current reversal will also produce a sharp drop in the ac output of the tube. To prevent such current reversal, it is recommended that provision be made to reduce the overall multiplier voltage for tubes with dc outputs at the upper end of the range. A reduction to 1000 volts should be adequate.

A horizontal deflection circuit for use with the 5826 is shown in Fig. 3; and a vertical deflection circuit in Fig. 4.

The video amplifier should be designed to cover a range of ac signal voltages corresponding to signal-output current of 3 to 30 microamperes in the load resistor (R30 in Fig. 2).

Fig. 3 - Horizontal Deflection Circuit for Type 5826.

C1: 0.01 µf
C2: 150 µf
C3: 0.04 µf
C5: 30 µf
C6: 0.02 µf
C7: 08: 100 µf
C9: Balancing Capacitor, 10 to 40 µf
LH: Horizontal Deflecting Coils
Terminals H1, H2, H3, and H4 on Deflecting-Coil Assembly, RCA Type No. 20175. LH has inductance of 5.5 mH and dc resistance of 19 ohms.
R1: 1 megohms
R2: Sawtooth Amplitude and Linearity Control, 250000 ohms
R3 R4: 250000 ohms
R5: 100 ohms, 2 watts
R6: 100 ohms
R7: 3000 ohms, 2 watts
R8: 10000 ohms, 2 watts. Value should be such that screen input of the 5866-G will not be exceeded.
R9: Peaking Amplitude and Linearity Control, 5000 ohms
R10: 50000 ohms, 1 watt
R11: Linearity Control, 250000 ohms
R12: Linearity Control, 100000 ohms
R13: Linearity Control, 500 ohms, 2 watts
R14: Centering Control, 10 ohms tapped at 5 ohms
T: Horizontal Deflection Output Transformer, RCA Type No. 20414. DC resistance of used portion of secondary is 3.4 ohms.

APPLICATION

Resolution of better than 500 lines at the center of the picture can be produced by the 5826 when the photocathode highlight illumination from an RMA Standard Test Chart is above the knee of the curve in Fig. 5. This value of resolution is that obtained after optimum adjustments have been made to minimize the prominence of beat patterns and dynode spots.

A beat pattern is caused by the beating of the scanning lines against the lines of the target mesh. As a result, a moiré pattern, sometimes called a "swirl", appears in large-area highlights of the picture. Besides defocusing of the beam
by adjustment of the beam-focus control (grid No. 4), a slight change in the vertical or horizontal size controls of the camera may be helpful in reducing the beat-pattern effect.

A dynode spot is caused by a slight blemish on a dynode surface and appears as a white spot chiefly in the dark areas of the picture. Little defocusing of the beam is required to minimize the effect of dynode spots when the scene is brightly illuminated, but in dark scenes, the effect of dynode spots is a limiting item on resolution.

To utilize the resolution capability of the 5826 in the horizontal direction with the standard scanning rate of 525 lines, it is necessary to use a video amplifier having a bandwidth of at least 6 megacycles. The maximum resolution obtainable is limited by the mesh-screen portion of the target.

Even with a wide-band amplifier, the resolution may be limited by "cross talk" caused by the scanning fields. Unless prevented by proper shielding from extending into the image section, these fields will cause the electron image on the target to move at scanning frequency. As a result, the picture will lack definition.

Proper shielding will be provided by a shield which employs seven separate layers of silicon-steel strips (0.007" thick and 1/2" wide) applied to the outside of the focusing coil as follows: First, wrap a single insulating layer of 0.005" thick motor paper around the focusing coil; then, wrap two turns, one above the other of the silicon-steel strip repeating the operation to fill the entire focusing-coil length but allowing 1/64" between each successive 2-turn section, to insure electrical insulation. Second, wrap a second insulating layer of motor paper and repeat the silicon-steel strip operation but space the 2-turn sections so that each is directly over a 1/64" insulating space of the previous layer. Operations 1 and 2 are repeated to provide 7 layers of shielding. The entire assembly is completed with a final wrap of motor paper. A convenient method for handling the 2-turn strip sections is to cut the strips just long enough to take care of two turns. Each 2-turn section is, of course, completely independent of any other section.

If equipment space will not accommodate the full seven layers of shielding as described above, fewer layers can be used, but will be less effective in minimizing "cross talk".

The sequence of adjustments in operating the 5826 is as follows: After the tube has been inserted in its sockets and the voltages applied as indicated under Typical Operation, allow it to warm up for 1/2 to 1 hour with the camera lens iris closed. Make certain that the deflection circuits are functioning properly to cause the electron beam to scan the target. Adjust the deflection circuits so that the beam will "overscan" the target, i.e., so that the area of the target scanned is greater than its sensitive area. This procedure during the warming-up period is recommended to prevent burning on the target a raster smaller than that used for on-the-air operation. Note that overscanning the target results in a smaller-than-normal picture on the
monitor. Then open the iris partially and focus the scene to be televised on the photocathode. Next, adjust the grid-No.1 voltage until a picture or noise appears on the monitor screen. If there is no picture, rotate the alignment coil and adjust the current through it until the maximum picture response is obtained. An occasional size scanning can be assured by first adjusting the deflection circuits to overscan the target sufficiently to cause the corners of the target to be visible in the picture, and then reducing the scanning until the corners just disappear. In this way, the maximum signal-to-noise ratio and maximum resolution can be obtained. Full-size scanning will also reduce the prominence of a beat pattern (see Resolution). As indicated previously, overscanning the target produces a smaller-than-normal picture on the monitor.

Underscanning the target, i.e., scanning an area of the target less than its sensitive area, should never be permitted. Underscanning produces a larger-than-normal picture on the monitor. If the target is overscanned for any length of time, a permanent change of target cutoff voltage of the underscanned area takes place with the result that the underscanned area thencforth is visible in the picture when full-size scanning is restored.

The target voltage will depend on the type of scene to be televised and should be adjusted simultaneously with the beam-current control to obtain the best signal-to-noise ratio and gray-scale reproduction. If the scene has a large range of illumination, the target should be operated at about 1.5 to 2 volts above cutoff so that highlights will not bloom. For scenes with a lower range of illumination, the target can be operated at or a little over 2 volts above cutoff with resultant gain in signal-to-noise ratio, and improved detail in the shadows.

A blanking signal should be supplied to the target to prevent the electron beam from striking the target during the return portions of the horizontal and vertical deflecting cycles. Unless this is done, the camera-tube return lines will appear in the received picture.

The blanking signal is a series of negative voltage pulses. The voltage between pulses must be constant to prevent fluctuation of the target voltage. During the blanking periods, the full beam current without video-signal modulation is returned to the multiplier and its multiplied output flows through the load resistance.

Shading may be required even with optimum adjustment of voltage on grid No.3 in order to obtain a uniformly shaded picture. A shading signal having a sawtooth shape, a frequency equal to the horizontal scanning frequency, and an amplitude about twice that of the useful video signal, is recommended. Provision should be made for controlling the amplitude of the shading signal and for reversing its polarity. The signal may be introduced into the video channel after the pre-amplifier in the camera but ahead

Fig. 5 - Typical Signal Output of Type 5826.
of the master gain control. With this arrangement, changing the gain-control setting does not change the ratio of the shading-signal amplitude to the video-signal amplitude.

The illumination on the photocathode is related to the scene illumination by the formula

$$I_s = \frac{4f^2 I_{pc} (m+1)^2}{TR}$$

where

- I_s = scene illumination in foot-candles
- f = f-number of lens
- I_{pc} = photocathode illumination in foot-candles
- m = linear magnification from scene to target
- T = total transmission of lens
- R = reflectance of principal subject in scene.

Except for very close shots, the linear magnification (m) from scene to target may be neglected.

For example, assume that the lens is $f:3.5$ having a transmission (T) of 75%, that the photocathode illumination is 0.06 foot-candle, and that the scene to be televised is composed largely of whites and blacks (such as a test chart) where the reflectance (R) may be in the order of 50%. Then,

$$I_s = \frac{4 \times 3.5^2 \times 0.06}{0.75 \times 0.50} = 8 \text{ foot-candles}$$

For average scenes where the principal subject has a reflectance of 5 to 10%, the incident illumination should have a value of 30 to 40 foot-candles.

It is good practice before attempting to transmit a particular scene to check its incident illumination with an illuminating-measuring device, such as an exposure meter. It is recommended that the average incident light level be greater than approximately 30 foot-candles for a good picture.

Typical signal output of the 5826 as a function of the highlight illumination on the photocathode under conditions where the televised scene has balanced blacks and whites for each of three types of illumination, is shown by the curve in Fig.5.

For the most natural appearance of televised subjects or scenes, it is recommended that the 5826 be operated so that the highlights on the photocathode bring the signal output slightly over the knee of the signal-output curve for the particular type of illumination utilized. Operation further along on the horizontal part of the curve will give pictures in which the subject has an over-emphasized outline. The position of the knee will shift for individual tubes. The knee may occur at values of highlight illumination on the photocathode ranging from about 0.03 to 0.05 foot-candle.

The spectral response of the 5826 is not subject to appreciable variation from tube to tube. The spectral response of the 5826 without correcting filter is shown by curve A in Fig.6. Curve B in this same figure, shows the spectral response when a Wratten No. 6 filter is used with the 5826. This curve very closely approaches that of the eye shown by the dotted curve C. Use of the filter, which can be obtained with lens-adapter ring at photographic-supply stores, results in a loss of sensitivity by about 2 to 1.

![Fig.6 - Spectral Sensitivity Characteristic of Type 5826 With and Without Filter.](image-url)
A retained image can generally be removed by focusing the 5826 on a clear white screen, and allowing the 5826 to operate for several hours with an illumination of about 1 foot-candle on the photocathode. This value is equivalent to 50 to 100 foot-candles on the screen with an f:2.8 lens.

To avoid retention of a scene, it is recommended that the 5826 always be allowed to warm up in the camera for 1/2 to 1 hour with the lens iris closed, and that the 5826 never be allowed to remain focused on a stationary bright scene for more than a few minutes. Never use more illumination than is necessary. If a target heater is used, the warm-up time can be reduced to approximately 10 or 15 minutes.

Failure of scanning even for a few minutes when light is incident on the photocathode may permanently damage the surface of the target. The damaged area shows up as a spot or line in the picture during subsequent operation.

To avoid damaging the 5826 during scanning failure, provision should be made to prevent automatically the scanning beam from reaching the target. The scanning beam can be prevented from reaching the target by (1) cutting off the scanning beam, or (2) making the target sufficiently negative. The scanning beam can be cut off by a relay which applies -115 to -125 volts bias to grid No.1. The target can be made sufficiently negative by a relay which applies a bias of at least -10 volts to it. Either relay is actuated by a tube which is controlled by a portion of the scanning pulse voltage developed across either the horizontal or the vertical deflecting coils, or both. It is important to insure that the horizontal scanning pulse and the vertical scanning pulse should each independently actuate the relay in case either one fails.

Rotation in the use of 5826's is recommended. After a 5826 is operated for 200 to 300 hours, it should be given an idle period of three or four weeks during which it generally will recover much of its original resolution and sensitivity.

New 5826's should be placed in service immediately upon receipt. They should be operated for several hours before being set aside as spares.

Spare tubes should be placed in service for several hours at least once a month in order to keep them free from traces of gas which may be liberated within the tube during prolonged storage.

Occasionally, a white spot which does not change in size when the beam focus voltage is varied, may be observed in the center of the picture. Such a spot, especially if it is visible on the monitor with the camera lens capped, is probably an ion spot. If the spot begins to grow in size with continuous operation of the 5826, the 5826 should be removed from service at once, and returned for re-processing. Continued operation of an image orthicon with an ion spot will eventually damage the target permanently.

BIBLIOGRAPHY

DOS and DON'TS on Use of RCA-5826

Here are the "dos"--

1. Allow the 5826 to warm up prior to operation.
2. Hold temperature of the 5826 within operating range.
3. Make sure alignment coil is properly aligned.
4. Check scene illumination before televising.
5. Select lens stop for best picture.
6. Use lowest beam current and highest target voltage for best signal-to-noise ratio and gray-scale reproduction.
7. Adjust beam-focus control for best usable resolution.
8. Give the 5826 an idle period every 200 hours.
9. Condition spare 5826's by operating several hours once each month.

Here are the "don'ts"--

1. Don't force the 5826 into its shoulder socket.
2. Don't operate the 5826 without scanning.
3. Don't underscan target.
4. Don't focus the 5826 on a stationary bright scene.
5. Don't operate a 5826 having an ion spot.

The significance of each of the above "dos" and "don'ts" in obtaining optimum performance from the 5826 is explained in the preceding pages of this bulletin.
DIMENSIONAL OUTLINE

ENLARGED BOTTOM VIEW

ANGLES OF 51°26' ± 5' ON CIRCLE DIAMETER OF 2.500" ± 0.001".

a. SIX HOLES HAVING DIAMETER OF 0.065" ± 0.001" AND ONE HOLE HAVING DIAMETER OF 0.150" ± 0.001", ALL HOLES HAVE DEPTH OF 0.265" ± 0.001". THE SIX 0.065" HOLES ARE ENLARGED BY 45° TAPER TO DEPTH OF 0.047".

b. SIX STOPS HAVING HEIGHT OF 0.187" ± 0.001", CENTERED BETWEEN PIN HOLES, TO BEAR AGAINST FLAT AREAS OF BASE.

c. RIM EXTENDING OUT A MINIMUM OF 1/8" FROM 2-13/16" DIAMETER AND HAVING HEIGHT OF 0.126" ± 0.001".

d. NECK-CYLINDER CLEARANCE HOLE HAVING DIAMETER OF 2.200" ± 0.001".

NOTE 2: DOTTED AREA IS FLAT OR EXTENDS TOWARD DIHEPTAL-BASE END OF TUBE BY 0.060" MAX.

KEYED ANNULAR BASE GAUGE

ANGULAR VARIATIONS BETWEEN PINS AS WELL AS ECCENTRICITY OF NECK CYLINDER WITH RESPECT TO PHOTOCATHODE CYLINDER ARE HELD TO TOLERANCES SUCH THAT PINS AND NECK CYLINDER WILL FIT FLAT-PLATE GAUGE WITH:

- SIX HOLES HAVING DIAMETER OF 0.065" ± 0.001" AND ONE HOLE HAVING DIAMETER OF 0.150" ± 0.001", ALL HOLES HAVE DEPTH OF 0.265" ± 0.001". THE SIX 0.065" HOLES ARE ENLARGED BY 45° TAPER TO DEPTH OF 0.047".

- SIX STOPS HAVING HEIGHT OF 0.187" ± 0.001", CENTERED BETWEEN PIN HOLES, TO BEAR AGAINST FLAT AREAS OF BASE.

- RIM EXTENDING OUT A MINIMUM OF 1/8" FROM 2-13/16" DIAMETER AND HAVING HEIGHT OF 0.126" ± 0.001".

- NECK-CYLINDER CLEARANCE HOLE HAVING DIAMETER OF 2.200" ± 0.001".

NOTE 1: MEASURED AT DISTANCE OF 1/32" BELOW BOTTOM OF ANNULAR BASE.
SOCKET CONNECTIONS
Bottom View

DIRECTION OF LIGHT:
PERPENDICULAR TO
LARGE END OF TUBE

SLOT IN
ANNULAR
SOCKET

WHITE INDEX LINE
ON FACE

SMALL-SHELL DIHEPTAL 14-PIN BASE

PIN 1: HEATER
PIN 2: GRID No. 4
PIN 3: GRID No. 3
PIN 4: INTERNAL CONNECTION - DO NOT USE
PIN 5: DYNODE No. 2
PIN 6: DYNODE No. 4
PIN 7: ANODE
PIN 8: DYNODE No. 5
PIN 9: DYNODE No. 3
PIN 10: DYNODE No. 1
PIN 11: INTERNAL CONNECTION - DO NOT USE
PIN 12: GRID No. 1
PIN 13: CATHODE
PIN 14: HEATER

KEYED JUMBO ANNULAR 7-PIN BASE

PIN 1: GRID No. 6
PIN 2: PHOTOCATHODE
PIN 3: INTERNAL CONNECTION - DO NOT USE
PIN 4: INTERNAL CONNECTION - DO NOT USE
PIN 5: GRID No. 5
PIN 6: TARGET
PIN 7: INTERNAL CONNECTION - DO NOT USE