GENERAL INFORMATION

Models DV880 and VR731 are table model 17 inch television receivers incorporating 19 tubes (including the picture tube). It is designed for operation on 115 volts, 25 or 60 cycle power.

Model DV784 is a console model television receiver using the same chassis as the DV880 receiver.

TELEVISION ANTENNA CONNECTIONS

An antenna is built into the cabinet that is reasonably satisfactory for strong local signals in the absence of severe reflections. An external antenna using a 300 ohm transmission line may be connected to the antenna terminals.

To service this receiver satisfactorily a good external antenna installation is needed. Make certain the transmission line is as short as possible, has 300 ohms impedance and is kept clear of all surrounding objects, including the antenna mast itself, by at least 6 inches. Unless the signal strength in the area of operation is at least 1000 microvolts, it is advisable to use a type of transmission line having very low attenuation.

The antenna itself should be designed to offer a good match to the 300 ohm transmission line, either directly or by transformer coupling.

Disconnect the built-in antenna when using the external antenna.

For lightning protection, the antenna mast should be connected to a good ground, and the transmission line connected to an approved type of lightning arrester, one terminal of which is grounded.

All electrical joints must be carefully made. A coating of glyptal on each joint exposed to the weather will assist in maintaining trouble-free performance over a long period of time.

TUBE COMPLEMENT

V1 6BK7 1st R-F Amplifier
V2 6J6 Oscillator Mixer
V101 6CB6 1st Video I-F Amplifier
V102 6CB6 2nd Video I-F Amplifier
V103 6CB6 3rd Video I-F Amplifier
V104 6AL5 Video Detector
V105 6AH6 Video Amplifier
V106 6SN7GT Sync. Amplifier and Separator
V107 6SN7GT Sync. Clipper and Vertical Oscillator
V108 654 Vertical Amplifier
V109 6AU6 Sound I-F Amplifier
V110 6AL5 F-M Sound Detector
V111 6AT6 1st Audio Amplifier
V112 6AQ5 Audio Output
V115 6SN7GT Horizontal Oscillator
V116 6AU5GT Horizontal Amplifier
V117 6AX4GT Booster Damper Diode
V118 1B3GT H.V. Rectifier
V119 17HP4 17" Picture Tube

INTERMEDIATE FREQUENCIES: Video 26.25 Mc; Sound 21.75 Mc.

INTERCARRIER: Sound System 4.5 Mc.

SCANNING: 525 Lines, interlaced.

VERTICAL SCANNING FREQUENCY: 60 c (field frequency).

FRAME FREQUENCY: 30 c (picture repetition rate).

TELEVISION CONTROLS

<table>
<thead>
<tr>
<th>Function</th>
<th>Location</th>
<th>Description</th>
<th>Function</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>Front Panel, Outer Shaft</td>
<td>Dual Knob</td>
<td>Vertical Linearity</td>
<td>Rear of Chassis</td>
<td>Slotted Stud</td>
</tr>
<tr>
<td>Off-Volume</td>
<td>Front Panel, Inner Shaft</td>
<td>Dual Knob</td>
<td>Height</td>
<td>Rear of Chassis</td>
<td>Slotted Stud</td>
</tr>
<tr>
<td>Tone</td>
<td>Front Panel, Outer Shaft</td>
<td>Dual Knob</td>
<td>Horizontal Range</td>
<td>Rear of Chassis</td>
<td>Slotted Core</td>
</tr>
<tr>
<td>Brilliance</td>
<td>Front Panel, Inner Shaft</td>
<td>Dual Knob</td>
<td>Horizontal Drive</td>
<td>Rear of Chassis</td>
<td>Slotted Stud</td>
</tr>
<tr>
<td>Horizontal Hold</td>
<td>Front Panel, Outer Shaft</td>
<td>Dual Knob</td>
<td>Horizontal Linearity</td>
<td>Rear of Chassis</td>
<td>Slotted Stud</td>
</tr>
<tr>
<td>Vertical Hold</td>
<td>Front Panel, Inner Shaft</td>
<td>Dual Knob</td>
<td>Horizontal Width</td>
<td>Rear of Chassis</td>
<td>Slotted Stud</td>
</tr>
<tr>
<td>Fine Tuning</td>
<td>Front Panel, Outer Shaft</td>
<td>Dual Knob</td>
<td>Focus</td>
<td>Rear of Chassis</td>
<td>Slotted Stud</td>
</tr>
<tr>
<td>Channel Selector</td>
<td>Front Panel, Inner Shaft</td>
<td>Dual Knob</td>
<td>Reflection Yoke</td>
<td>On Neck of Tube</td>
<td>Adjustable Rings</td>
</tr>
<tr>
<td>Local Suburban</td>
<td>Switch</td>
<td>Rear of Chassis Knob</td>
<td>Adjustment</td>
<td>On Neck of Tube</td>
<td>Magnet and Clamp</td>
</tr>
<tr>
<td>Fringe</td>
<td></td>
<td></td>
<td>Ion Trap Magnet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HIGH VOLTAGE WARNING

Operation of the receiver chassis outside of the cabinet involves a shock hazard. An interlock in the line cord disconnects the power when the cover of the high voltage unit is removed. The high voltage supply, while of a low current capacity, operates at a 15,000 volt potential. Exercise all normal HIGH VOLTAGE precautions while working on this equipment.

PICTURE TUBE HANDLING WARNING

The picture tube envelope encloses a high vacuum and with the large surface area of glass involved, the stresses created are considerable. Any accidental blow or rough handling may cause the tube to implode with extreme violence. The picture tube should be handled only by qualified persons protected by heavy gloves and shatterproof goggles.

SERVICE ADJUSTMENTS

The service adjustments normally will require an occasional minor adjustment if any circuit work or tube replacement is required. A test pattern, generated either locally in the shop or obtained from a television station, is recommended for best results. The operating and auxiliary controls located on the front panel should be set for as good a pattern as possible before making the following adjustments.

If the picture is not properly centered remove the back cover and adjust the rings on the centering device, which is located on the neck of the tube, until the picture is centered. If proper centering cannot be restored in this manner a slight readjustment of the deflection yoke mounting may be necessary. To obtain a clear sharply defined picture adjust the focus control.

Adjust the height and width controls so that the picture fills out the dimensions of the screen. A slight readjustment of the centering device may then be necessary.

The horizontal drive is adjusted by advancing the adjustment to a point where a vertical white line appears in the pattern and then backing it off just beyond the point where the white line disappears.

Adjust the horizontal linearity and vertical linearity adjustments for a symmetrical pattern. A slight readjustment of the height and width controls may then be necessary.

NOTE—The sequence of “non-operating” control adjustments outlined is suggested as a convenient method of approach and not an arbitrary procedure. Variations of the procedure are permitted to obtain the final result.

TO REMOVE THE CHASSIS FROM THE CABINET

1. Remove the knobs on the front by pulling in the forward direction.
2. Remove the screws holding the back cover and set aside the cover.
3. Remove the speaker plug at the chassis.
4. Remove the leads from the built-in antenna at the terminals on the chassis.
5. Removal of the chassis may now be completed by removing the five chassis mounting bolts.

REMOVING THE PICTURE TUBE

1. Remove the chassis from the cabinet by following the above procedure.
2. Disconnect the anode contact (PL-104) from the side of the picture tube and insure the discharge of the high voltage filter condenser by grounding this lead to the chassis.
3. Disconnect the tube socket from the base of the tube.
4. Slip the ion trap magnet from the neck of the tube.
5. Slip the centering device from the neck of the tube.
6. Remove the radiation shield (braid) from the cone of the tube.
7. Remove the mounting strap at the front rim of the tube.
8. Loosen the four rear support adjusting screws. Raise the front of the tube just far enough to clear the two stop pads on the front of the picture tube mounting brackets and slip the tube forward until the neck is clear of the deflection yoke assembly.

CAUTION: If the tube fails to slip out smoothly investigate and remove the cause of the trouble. DO NOT USE FORCE.
INSTALLING AND ADJUSTING THE PICTURE TUBE

1. Wrap the rubber strip around the front of the tube.
2. Position the tube so that the anode contact is located at the left side of the tube as viewed from the screen.
3. Slip the neck of the tube through the rubber collar and deflection yoke assembly, sealing the rubber strip on the two front mounting brackets. Make certain that the bottom face of the tube rests against the rubber stoppads and not against the metal brackets.
4. Place the mounting strap around the rubber strip and tighten firmly.
5. Move the rear support so that the rubber collar rests firmly against and supports the cone of the tube. Tighten the rear support adjustment screws.
6. Slip the centering device over the neck of the tube. Make certain adjusting rings are next to the deflection yoke.
7. Slip the ion trap magnet over the neck of the tube. The red dot should be uppermost with the magnet on the left side looking at the rear of the tube.
8. Replace the radiation shield (braid) assembly.
9. Connect the picture tube socket and anode connector.
10. Turn the receiver on and allow a few minutes for warm up.
11. Advance the brilliance control and set the ion trap magnet for maximum raster brilliance, backing off the brilliance control as the maximum point is approached. The ion trap magnet must be rotated about the axis of the tube as well as shifted along the neck in order to obtain the proper setting. With the brilliance control set slightly above normal brilliance and the contrast control full counterclockwise, adjust the focus control until the raster is sharply defined. Readjust the brilliance control for normal brilliance and touch up the ion trap magnet setting.
12. Connect the antenna and tune in a test pattern.
13. Readjust the contrast control until the five different shades of gray are clearly distinguished on the test pattern.
14. Check the position and appearance of the test pattern. If it is off center or shadowed at the corners (electron beam striking the neck of the tube), adjust the rings on the centering device; adjust the focus control until a clear, sharply defined raster is obtained.
15. If the lines of the raster are not horizontal or square with the escutcheon, loosen the deflection yoke adjustment screw and rotate the deflection yoke until the proper condition is obtained. Tighten this adjustment.
16. Follow the procedure under Service Adjustments and make any minor adjustments of the focus control or deflection yoke necessary to obtain the desired result. The final adjustment of the focus control should leave the test pattern approximately centered. Check the position and appearance of the test pattern again and if it is off center or shadowed at the corners (electron beam striking the neck of the tube) adjust the centering control. Reset the focus control if necessary.

ADJUSTMENT OF DEFLECTION YOKE TRIMMER C180

The yoke balancing trimmer C180 is connected in parallel with the horizontal deflection balancing capacitor C139 and for safety precautions is located inside the H.V. unit. Adjusting this trimmer eliminates wiggle of the horizontal sweep lines which may appear at the left side of the picture of some receivers. The wiggle may be defined as a sine wave distortion of the trace line, the amplitude of the wave varying from zero up to ¼ inch. The effect is stationary and can be easily detected on the test pattern. Refer to diagram on page 8.

This condition is the effect of unbalanced distributed capacity of the deflection yokes. If the two deflection coils of the yoke are not exactly identical, the unbalanced distributed capacity has to be balanced by the addition of a variable trimmer, C180. As the range of C180 is limited, the balance is influenced by the tolerance variations of the yoke capacitor C139.

ADJUSTMENT OF THE HIGH VOLTAGE ON THE PICTURE TUBE ANODE

The second anode potential should be slightly less than 15,000 volts on a receiver that is functioning properly. Since the high voltage is obtained from the horizontal output transformer, the service adjustments must be made, or known to be in proper adjustment, before a high voltage measurement will have any meaning.

Improper operation of the horizontal sweep circuit or circuit faults in the high voltage filter will generally account for an abnormal anode potential. If the anode potential is low, check the HORIZONTAL DRIVE adjustment outlined under Service Adjustments.
CAUTION HIGH VOLTAGE

DO NOT USE HAND-HELD FLEXIBLE TEST LEADS WHEN MAKING THE FOLLOWING MEASUREMENT. KEEP THE HANDS CLEAR OF THE CIRCUIT DURING MEASUREMENT. AN 11 TO 15 KV. POTENTIAL EXISTS IN THIS CIRCUIT. EXERCISE ALL NORMAL HIGH VOLTAGE PRECAUTIONS.

To measure the second anode potential, set the CONTRAST and BRIGHTNESS controls at minimum. With the controls in this position, the resistance of the test circuit will simulate the load presented to the high voltage power supply of the picture tube. Connect a test circuit as shown. Make the resistor string self-supporting and allow adequate clearance between the resistors and chassis parts to prevent high voltage breakdown. A meter scale of 0 to 500 volts should be used. Observe the reading on the meter scale and multiply this reading by 50 to obtain the voltage across the circuit. As an example, if the V.T.V.M. reads 260 volts, the potential is 260 x 50 or 13,000 volts.

HORIZONTAL OSCILLATOR ALIGNMENT

If the Horizontal Hold control on the front panel fails to restore synchronization the Horizontal Range adjustment should be reset.

1. Tune in a weak signal. (If a weak signal is not available attenuate the available signal to approximately 50 uV at the input.)
2. Turn the Horizontal Hold control to the extreme clockwise position.
3. Adjust the Horizontal Range adjustment until a large vertical bar appears at the extreme left side of the tube. Then turn in the Horizontal Range adjustment until the Vertical bar just barely disappears to the left of the tube.
4. Check the action of the Horizontal Hold control on all active channels. Repeat the above steps if necessary to maintain stable synchronization.

Note: If the above procedure fails to restore stable synchronization, a waveform adjustment may be made with the aid of an oscilloscope as follows:

5. Connect the oscilloscope as shown in oscilloscope connection diagram. Adjust the Tertiary Waveform adjustment T-111 (underside) until the sine wave is 10% less in amplitude than the peak of the sawtooth (waveform-diagrams), while maintaining the picture in synchronization with the Horizontal range adjustment.

Note: This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is much lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effort of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.

6. Remove the oscilloscope and repeat step Nos. 1, 2, and 3, if necessary.
7. Check the action of the Horizontal Hold control and repeat above steps as required to provide positive synchronization on all channels.
FM SOUND CHANNEL ALIGNMENT

EQUIPMENT REQUIRED
Signal generator covering 4 MC to 30 MC.
Electronic voltmeter.
IN34 crystal detector circuit as shown to the right.

PROCEDURE
1. Connect the low frequency signal generator output, through a .005 capacitor, across the IF test terminals.
2. Connect the detector circuit and V.T.V.M. as shown in the sound alignment circuit.
3. Set the signal generator to 4.5 MC using just enough output to give approximately one volt reading at the electronic voltmeter.
4. Adjust the 4.5 MC TRAP ADJUSTMENT located on the under side of the chassis for minimum voltage as shown on the meter.
5. Disconnect the detector test circuit.
6. Connect the V.T.V.M. to pin No. 2 of the 6AL5 FM DETECTOR tube (V110).
7. Adjust the LIMITER GRID adjustment (L106) and the primary of T-108 (bottom adjustment) for maximum indication on the voltmeter.
8. Connect the electronic voltmeter across the 1000 mmf condenser (C130) at the output of the FM detector stage and adjust the FM DET. SEC. ADJ. of the FM detector transformer (T-108) for the null. If a null (0-volts) appears at more than one setting use the position nearest to the top limit of the tuning slug.
9. Shift the frequency of the signal generator either side of 4.5 MC and touch up the FM DETECTOR PRIMARY ADJUSTMENT (bottom of T-108) for approximately equal peaks. Use just enough signal generator output to obtain one volt peaks for best results.
10. After completing the alignment procedure, place the receiver in operation and make the following touch-up adjustments:
 (a) Tune in a TV test pattern and adjust the 4.5 trap adjustment for maximum vertical wedge definition (minimum 4.5 MC break-up in the picture).
 (b) Tune in a weak TV station (50 uV) and adjust the limiter grid adjustment (L-106) and the FM DETECTOR SECONDARY ADJUSTMENT (T-108) for maximum sound and best noise rejection.
Note: These adjustments should be a very small amount, otherwise complete realignment may be necessary.

IF AMPLIFIER ALIGNMENT USING A 20-30 MC SIGNAL GENERATOR AND A V.T.V.M.
1. Place a tight-fitting shield over the osc./mixer tube (V-2) and connect the ungrounded RF lead from the signal generator to the shield. This shield should not be grounded.
2. Connect the V.T.V.M. to test term. "A" (See alignment location diagram).
3. Use just enough signal generator output to maintain a 2-volt level at the V.T.V.M.
4. Set the signal generator to 21.75 MC and adjust the 21.75 MC sound trap (bottom slug of T-103) for a minimum voltage at the V.T.V.M.
5. Set the signal generator to 24.5 MC, hold the channel selector between channels and adjust L-113 for maximum V.T.V.M. reading. Return the channel selector to its normal position, shunt the 4700 ohm grid resistor of V-101 with a 1000 ohm resistor and adjust L-9 for maximum V.T.V.M. reading.
6. All other IF adjustments are made to give maximum indications on the V.T.V.M. at the frequencies designated in the alignment location diagram and on the schematic diagram.
IF AMPLIFIER ALIGNMENT CHART

<table>
<thead>
<tr>
<th>Signal Generator Frequency</th>
<th>Adjustment</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(No Modulation)</td>
<td>(Refer to alignment location diagram)</td>
<td>Adjusted</td>
</tr>
<tr>
<td>24.5 MC</td>
<td>L113 and L9 24.5 MC IF Adj.</td>
<td>1st IF Amplifier</td>
</tr>
<tr>
<td>25.6 MC</td>
<td>T102 25.6 MC IF Adj.</td>
<td>2nd IF Amplifier</td>
</tr>
<tr>
<td>22.9 MC</td>
<td>T103 22.9 MC IF Adj. Top</td>
<td>3rd IF Amplifier</td>
</tr>
<tr>
<td>24.5 MC</td>
<td>T104 24.5 MC IF Adj.</td>
<td>Video Detector</td>
</tr>
<tr>
<td></td>
<td>(Adj. for Min. Voltage)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: After adjusting the 21.75 MC Sound Trap recheck the setting of the 3rd IF Transformer (Top of T-103).

7. Check the i-f amplifier frequency response by tuning the signal generator from 21 MC through 26.25 MC and observing the change in d-c voltage at the electronic voltmeter. If the signal generator output is set for an electronic voltmeter reading of 1.5 volts at the peak i-f amplifier response, the d-c voltage should not drop below one volt between the two peaks normally obtained with this i-f amplifier. If the response is unsatisfactory, repeat the procedure or try slight modifications on the recommended settings to obtain the desired response. Avoid resonating the coils with the iron core at the bottom end of the coil form (Adjustment screw near limit of its travel). If a sweep type signal generator and oscilloscope are available the problem of making the final adjustments will be much easier. Check the two carrier i-f responses, 21.75 MC and 26.25 MC. The 21.75 MC response will be approximately 26 dB below the peak response (approx. .075 volts) and the 26.25 MC response will fall approximately 6 dB below the peak (approx. 0.75 volts).

The average i-f amplifier sensitivity, when feeding the signal generator output through the receiver as described in step 2, will run approx. 500 to 1000 microvolts for the one volt d-c peak measured at resistor R-116. (Receiver's oscillator operating on any vacant channel.)
ALIGNMENT POINTS AND TUBE LOCATION
REPLACEMENT PARTS

FOR DEPENDABLE REPAIRS USE ONLY GENUINE REPLACEMENT PARTS

When ordering always state model number of receiver and description and part number of part.

CAPACITORS

<table>
<thead>
<tr>
<th>No.</th>
<th>Value</th>
<th>Rating</th>
<th>Description</th>
<th>Part No.</th>
<th>No.</th>
<th>Value</th>
<th>Rating</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2200 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C11</td>
<td>300 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C2</td>
<td>500 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C12</td>
<td>2200 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C3</td>
<td>800 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C13</td>
<td>2200 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C4</td>
<td>1500 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C14</td>
<td>2200 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C5</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C15</td>
<td>2200 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C6</td>
<td>2200 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C16</td>
<td>2200 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C7</td>
<td>1000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C17</td>
<td>2200 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C8</td>
<td>1000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C18</td>
<td>3000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C9</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C19</td>
<td>3000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C10</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C20</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C11</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C21</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C12</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C22</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C13</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C23</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C14</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C24</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C15</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C25</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C16</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C26</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C17</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C27</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C18</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C28</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C19</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C29</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C20</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C30</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C21</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C31</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
<tr>
<td>C22</td>
<td>2000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
<td>C32</td>
<td>4000 ufd</td>
<td>500V</td>
<td>Ceramic</td>
<td>510-014</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>No.</th>
<th>Value</th>
<th>Rating</th>
<th>Description</th>
<th>Part No.</th>
<th>No.</th>
<th>Value</th>
<th>Rating</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>22,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R11</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R2</td>
<td>47,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R12</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R3</td>
<td>220,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R13</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R4</td>
<td>220,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R14</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R5</td>
<td>220,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R15</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R6</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R16</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R7</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R17</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R8</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R18</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R9</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R19</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R10</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R20</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R11</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R21</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R12</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R22</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R13</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R23</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R14</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R24</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R15</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R25</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R16</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R26</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R17</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R27</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R18</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R28</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R19</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R29</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R20</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R30</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R21</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R31</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
<tr>
<td>R22</td>
<td>100,000 ohms*</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
<td>R32</td>
<td>10,000 ohms</td>
<td>½ w.</td>
<td></td>
<td>510-014</td>
</tr>
</tbody>
</table>

Part of RF Tuner 130-135
REPLACEMENT PARTS — Continued

RESISTORS

R156 10 ohms........... 2 w. w. 501-713
R157 100,000 ohms........ 2 w. W. 501-749
R158 1000 ohms........ 5 w. W. 501-620
R159 700,000 ohms........ 5 w. 501-649
R160 560,000 ohms........ 5 w. 501-791
R161 1,000 ohms........ 5 w. 501-653
R162 360 ohms........ 5 w. 501-633
R163 470 ohms........ 5 w. 501-633
R164 1 Megohm, Cathode Choke........ 2 w. 501-653
R165 3900 ohms........ 1 w. 501-653
R166 130,000 ohms........ 1 w. 501-653
R167 330,000 ohms........ 1 w. 501-653
R168 820,000 ohms........ 1 w. 501-653
R169 82,000 ohms........ 1 w. 501-653
R170 330,000 ohms........ 1 w. 501-653
R171 50,000 ohms........ 1 w. 501-653
R172 66,000 ohms........ 1 w. 501-653
R173 150,000 ohms........ 1 w. 501-653
R174 10,000 ohms........ 1 w. 501-653
R175 850,000 ohms........ 1 w. 501-653
R176 50,000 ohms........ 1 w. 501-653
R177 430,000 ohms........ 1 w. 501-653
R178 47,000 ohms........ 1 w. 501-653

Horizontal Hold Control........ 502-039
Horizontal Drive Control........ 502-087

CAPACITOR-RESISTOR NETWORK

CR101 0.002 uf........ 150V........ 22,000 ohms........ 5 w......... 820000 ohms........ 5 w. 519-303
Vertical Integrating Network........ 519-303

TRANSFORMERS AND COILS

No. Description Part No. No. Description Part No.
L1 L2 Antenna Coil........ L101 L102
L3, L4, L5 Converter Coils........ L103 L104
L7, L8 Filament Chokes........ L105 L106
L9 24.5 Mc Coupling Coil........ L107 L108
L10 R. F. Choke........... L109 L110
L11 Video Peaking Coil........ L111 L112
L12 Video Peaking Coil........ L113 L114
L13 3.5 Mc Trap Video Plate Adj........ L115 L116
L14 Deflection Yoke........ L117 L118
L15 Horizontal Linearity Coil........ L119 L120
L16 Horizontal Linearity Coil........ L121 L122
L17 Filament Choke........ L123 L124

VOLTAG E CHART

<table>
<thead>
<tr>
<th>TUBE DESIGNATION</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>V101 6G86</td>
<td>-54 *</td>
<td>.6 *</td>
<td>H</td>
<td>H</td>
<td>125</td>
<td>125</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V102 6G86</td>
<td>-63 *</td>
<td>62 *</td>
<td>H</td>
<td>H</td>
<td>135</td>
<td>135</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V103 6G86</td>
<td>1.5 *</td>
<td>NR</td>
<td>H</td>
<td>H</td>
<td>130</td>
<td>130</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V104 6AL5</td>
<td>-56 *</td>
<td>NR</td>
<td>H</td>
<td>H</td>
<td>260</td>
<td>255</td>
<td>9.5 *</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V105 6AH6</td>
<td>5.2 *</td>
<td>9.5 *</td>
<td>H</td>
<td>H</td>
<td>75</td>
<td>H</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V106 6SN7</td>
<td>—</td>
<td>36</td>
<td>—</td>
<td>—</td>
<td>36</td>
<td>36</td>
<td>H</td>
<td>H</td>
<td>—</td>
</tr>
<tr>
<td>V107 6SN7</td>
<td>—</td>
<td>115</td>
<td>—</td>
<td>—</td>
<td>115</td>
<td>115</td>
<td>H</td>
<td>H</td>
<td>—</td>
</tr>
<tr>
<td>V108 6A84</td>
<td>—</td>
<td>33</td>
<td>H</td>
<td>H</td>
<td>55</td>
<td>55</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>V109 6A56</td>
<td>—</td>
<td>—</td>
<td>H</td>
<td>H</td>
<td>NR</td>
<td>—</td>
<td>NR</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V110 6AL5</td>
<td>—</td>
<td>—</td>
<td>H</td>
<td>H</td>
<td>NR</td>
<td>—</td>
<td>NR</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V111 6A56</td>
<td>7 *</td>
<td>12</td>
<td>H</td>
<td>H</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>V112 6AO5</td>
<td>—</td>
<td>—</td>
<td>H</td>
<td>H</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>V113 6A54</td>
<td>—</td>
<td>12</td>
<td>2 *</td>
<td>48 *</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>V114 6A54</td>
<td>—</td>
<td>12</td>
<td>32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V115 6A54</td>
<td>—</td>
<td>12</td>
<td>32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V116 6A54</td>
<td>—</td>
<td>12</td>
<td>32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V117 6A54</td>
<td>—</td>
<td>12</td>
<td>32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>V118 133</td>
<td>—</td>
<td>12</td>
<td>32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

TAKE NO MEASUREMENTS

PIN 2 = 165 v **
PIN 10 = 325 v **
PIN 11 = 120 v **

V119 17H14
PIN 6 Varies with setting of focus control.

NR—Not Readable.
* — Measured with V.T.V.M.
**—Brightness Control set for normal operation.
Operating Voltages—All heaters 6.3 v.
B1 Low 150 v, B2 High 310 v.
All voltages are measured to chassis with 20,000 ohms per volt meter and are positive unless otherwise specified. Line voltage 117 v 60 cycle.
Contrast and volume controls at minimum setting. Local distance switch S102 in local position. Zero input signal.
MISCELLANEOUS ELECTRICAL PARTS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>070-210</td>
<td>Silver Vortex Antenna</td>
<td>100-030</td>
<td>Line Cord and Plug Interlock</td>
</tr>
<tr>
<td>121-141</td>
<td>Antenna Terminal Panel Assembly</td>
<td>571-236</td>
<td>Line Cord Receptacle</td>
</tr>
<tr>
<td>570-036</td>
<td>C.R.T. Socket Assembly</td>
<td>530-129</td>
<td>Rectifier 5P1, 150 m.a., 130 volts</td>
</tr>
<tr>
<td>110-398</td>
<td>C.R.T. Clamping Strap 17"</td>
<td>041-138</td>
<td>Speaker 8" P.M. Table Model</td>
</tr>
<tr>
<td>303-270</td>
<td>C.R.T. Rubber Cushion Strap</td>
<td>041-139</td>
<td>Speaker 8" P.M. Console Model</td>
</tr>
<tr>
<td>301-477</td>
<td>C.R.T. Radiation Shield Braid</td>
<td>121-137</td>
<td>Speaker and Cable Assembly, Table Model</td>
</tr>
<tr>
<td>130-139</td>
<td>Centering Device—Electrostatic</td>
<td>121-150</td>
<td>Speaker and Cable Assembly, Console Model</td>
</tr>
<tr>
<td>121-133</td>
<td>Deflection Yoke and Mounting Bracket</td>
<td>301-339</td>
<td>Spring Clip Coil Guide</td>
</tr>
<tr>
<td>060-167</td>
<td>Deflection Yoke</td>
<td>310-052</td>
<td>Spring for Radiation Shield</td>
</tr>
<tr>
<td>646-020</td>
<td>Fuse 1/4 amp. Slo-blo</td>
<td>080-141</td>
<td>Switch On-Off Part of R154</td>
</tr>
<tr>
<td>120-930</td>
<td>H.V. Socket Assembly</td>
<td>130-138</td>
<td>Standard Coil Tuner, Cascode</td>
</tr>
<tr>
<td>570-032</td>
<td>H.V. Socket</td>
<td>570-001</td>
<td>Tube Socket Octal</td>
</tr>
<tr>
<td>571-227</td>
<td>H.V. Connector and Lead</td>
<td>570-031</td>
<td>Tube Socket Octal Low Loss</td>
</tr>
<tr>
<td>121-140</td>
<td>H.V. Shield, Cover and Interlock Assembly</td>
<td>570-030</td>
<td>Tube Socket 9 Pin Miniature, Low Loss</td>
</tr>
<tr>
<td>130-140</td>
<td>Ion Traps Magnet</td>
<td>570-009</td>
<td>Tube Socket 7 Pin Miniature</td>
</tr>
</tbody>
</table>

CABINET PARTS FOR MODELS DV880 AND DV784

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>030-311</td>
<td>Walnut Cabinet Table Model DV880</td>
<td>572-159</td>
<td>Knob, Plain, Inner</td>
</tr>
<tr>
<td>030-312</td>
<td>Mahogany Cabinet Table Model DV880</td>
<td>572-160</td>
<td>Knob, Plain, Outer</td>
</tr>
<tr>
<td>030-313</td>
<td>Blonde Cabinet Table Model DV880</td>
<td>572-155</td>
<td>Knob, Contrast</td>
</tr>
<tr>
<td>030-357</td>
<td>Walnut Cabinet Console Model DV784</td>
<td>572-156</td>
<td>Knob, Off-On Volume</td>
</tr>
<tr>
<td>030-358</td>
<td>Mahogany Cabinet Console Model DV784</td>
<td>572-157</td>
<td>Knob, Channel Indicator</td>
</tr>
<tr>
<td>030-359</td>
<td>Blonde Cabinet Console Model DV784</td>
<td>572-158</td>
<td>Knob, Fine Tuning</td>
</tr>
<tr>
<td>330-008</td>
<td>Crest, Philips</td>
<td>332-654</td>
<td>Knob Escutcheon DV784</td>
</tr>
<tr>
<td>110-406</td>
<td>Grille Strip and Medallion Assembly DV784</td>
<td>572-203</td>
<td>Knob, Local-Distance Switch</td>
</tr>
<tr>
<td>627-044</td>
<td>Grille Cloth, 13" x 22", Dark, DV784</td>
<td>332-655</td>
<td>C.R.T. Escutcheon DV784</td>
</tr>
<tr>
<td>627-058</td>
<td>Grille Cloth, 13" x 22", Light, DV784</td>
<td>332-656</td>
<td>C.R.T. Escutcheon Mask DV784</td>
</tr>
<tr>
<td>121-139</td>
<td>Cabinet Back Cover Assembly DV880</td>
<td>332-671</td>
<td>C.R.T. Escutcheon Mask DV880</td>
</tr>
<tr>
<td>121-149</td>
<td>Cabinet Back Cover Assembly DV784</td>
<td>332-637</td>
<td>C.R.T. Window DV784</td>
</tr>
<tr>
<td>350-135</td>
<td>Knob Identification Moulding</td>
<td>332-672</td>
<td>C.R.T. Window DV880</td>
</tr>
</tbody>
</table>

CABINET PARTS FOR MODEL VR731

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>030-308</td>
<td>Walnut Cabinet VR731</td>
<td>572-162</td>
<td>Knob, Off-On Volume</td>
</tr>
<tr>
<td>030-309</td>
<td>Mahogany Cabinet VR731</td>
<td>572-164</td>
<td>Knob, Channel Indicator</td>
</tr>
<tr>
<td>030-310</td>
<td>Blonde Cabinet VR731</td>
<td>572-165</td>
<td>Knob, Fine Tuning</td>
</tr>
<tr>
<td>330-061</td>
<td>Crest, Rogers Majestic</td>
<td>572-203</td>
<td>Knob, Local — Suburban — Fringe</td>
</tr>
<tr>
<td>121-138</td>
<td>Cabinet Back Cover Assembly</td>
<td>332-671</td>
<td>C.R.T. Escutcheon Mask</td>
</tr>
<tr>
<td>350-135</td>
<td>Knob Identification Moulding</td>
<td>332-672</td>
<td>C.R.T. Window</td>
</tr>
<tr>
<td>572-159</td>
<td>Knob, Plain, Inner</td>
<td>310-255</td>
<td>Shaft Adapter 1/4" to 3/8"</td>
</tr>
<tr>
<td>572-160</td>
<td>Knob, Plain, Outer</td>
<td>524-510</td>
<td>Set Screw for Adapter</td>
</tr>
<tr>
<td>572-163</td>
<td>Knob, Contrast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>