ADCION

<table>
<thead>
<tr>
<th>Model</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>217B Circuit</td>
<td>33, 40</td>
</tr>
<tr>
<td>217B Alignment</td>
<td>8, 9</td>
</tr>
<tr>
<td>217B Voltages</td>
<td>8</td>
</tr>
</tbody>
</table>
| 217B Same as 217A above | For Service see Model 59-2 in RCC Radio Supplement No. 52.

ADMIRAL

<table>
<thead>
<tr>
<th>Chassis</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181 Circuit</td>
<td>41, 42</td>
</tr>
<tr>
<td>2181 Service Data</td>
<td>4</td>
</tr>
<tr>
<td>2181 Allignment</td>
<td>35, 36, 8</td>
</tr>
<tr>
<td>2181 Trouble Shooting</td>
<td>4, 10</td>
</tr>
<tr>
<td>2181 Service Tips</td>
<td>11</td>
</tr>
<tr>
<td>2181 Production Changes</td>
<td>18</td>
</tr>
<tr>
<td>2181 Chassis Layouts</td>
<td>19</td>
</tr>
<tr>
<td>2181 Tuner Service</td>
<td>14, 18</td>
</tr>
<tr>
<td>2181 Chassis, second run</td>
<td>42, 46</td>
</tr>
<tr>
<td>2181 Chassis, third run</td>
<td>47, 48</td>
</tr>
<tr>
<td>2181 Chassis, fourth run</td>
<td>49, 50</td>
</tr>
<tr>
<td>2181 Other Data</td>
<td>Same as 2181.</td>
</tr>
<tr>
<td>2181 Same as 2181.</td>
<td></td>
</tr>
<tr>
<td>4135 Same as 4135.</td>
<td></td>
</tr>
</tbody>
</table>
| **NOTE:** For model numbers of various cabinets see identification chart on Page 7.

ELECTROHOME

<table>
<thead>
<tr>
<th>Model</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>75A Circuit</td>
<td>31, 39</td>
</tr>
<tr>
<td>75A Allignment</td>
<td>6, 13</td>
</tr>
<tr>
<td>75A Voltages</td>
<td>13</td>
</tr>
<tr>
<td>75A Chassis Layouts</td>
<td>19</td>
</tr>
<tr>
<td>214B Same as 75A.</td>
<td></td>
</tr>
<tr>
<td>76D Same as 75D.</td>
<td></td>
</tr>
<tr>
<td>Martel Grey Same as 76A.</td>
<td></td>
</tr>
</tbody>
</table>

MOTOROLA

<table>
<thead>
<tr>
<th>Model</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1714B, B</td>
<td>(Chassis 72-704) Oct. 52</td>
</tr>
<tr>
<td>1714B, B Service Adjustments</td>
<td>21</td>
</tr>
<tr>
<td>1714B, B Alignment</td>
<td>21 to 24</td>
</tr>
<tr>
<td>1714B, B Chassis Layouts</td>
<td>30, 36</td>
</tr>
<tr>
<td>1714B, B Same as 1724B.</td>
<td></td>
</tr>
<tr>
<td>1714B (Chassis 72-702) Same as 1714B.</td>
<td></td>
</tr>
</tbody>
</table>

WESTINGHOUSE

<table>
<thead>
<tr>
<th>Model</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L74EK Circuit</td>
<td>72, 74</td>
</tr>
<tr>
<td>1L74EK Service Adjustments</td>
<td>69</td>
</tr>
<tr>
<td>1L74EK All other data same as</td>
<td>72, 74</td>
</tr>
<tr>
<td>2L74VE</td>
<td>Same as 1L74EK.</td>
</tr>
<tr>
<td>1L74BF Same as 1L74EK.</td>
<td></td>
</tr>
<tr>
<td>1L74BT Circuit</td>
<td>79, 80</td>
</tr>
<tr>
<td>1L74BT All other data same as</td>
<td>79, 80</td>
</tr>
<tr>
<td>1L74FT Circuit</td>
<td>82</td>
</tr>
<tr>
<td>1L74FT All other data same as</td>
<td>82</td>
</tr>
<tr>
<td>2L74TE</td>
<td>See Supp. No. 4.</td>
</tr>
<tr>
<td>2L74TE All other data same as</td>
<td>2L74TE See Supp. No. 4.</td>
</tr>
<tr>
<td>2074VE Circuit</td>
<td>79, 80</td>
</tr>
<tr>
<td>2074VE All other data same as</td>
<td>79, 80</td>
</tr>
<tr>
<td>2074VE TV Alignment</td>
<td>89 to 90</td>
</tr>
<tr>
<td>2074VE DC Alignment</td>
<td>90 to 97</td>
</tr>
<tr>
<td>2074VE DC Circuit</td>
<td>98</td>
</tr>
</tbody>
</table>

NORTHERN ELECTRIC

<table>
<thead>
<tr>
<th>Model</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE141 Same as 2114.</td>
<td></td>
</tr>
<tr>
<td>MT141C (Code L,Y,2)</td>
<td>59, 60</td>
</tr>
<tr>
<td>MT141C (Code L,F,2)</td>
<td>61, 62</td>
</tr>
<tr>
<td>(For other codes see Production Changes)</td>
<td></td>
</tr>
<tr>
<td>MT141 Alignment</td>
<td>87, 88</td>
</tr>
<tr>
<td>MT141 Trouble Shooting</td>
<td>89</td>
</tr>
<tr>
<td>MT141 Production Changes</td>
<td>91</td>
</tr>
<tr>
<td>MT141 Voltages</td>
<td>92</td>
</tr>
<tr>
<td>MT141 Chassis Layouts</td>
<td>93, 94</td>
</tr>
<tr>
<td>MT141 Chassis Layouts</td>
<td>95, 96</td>
</tr>
<tr>
<td>MT1414 Same as MT141</td>
<td></td>
</tr>
<tr>
<td>MT141 Alignment</td>
<td>87, 88</td>
</tr>
<tr>
<td>MT141 Trouble Shooting</td>
<td>89</td>
</tr>
<tr>
<td>MT141 Production Changes</td>
<td>91</td>
</tr>
<tr>
<td>MT141 Voltages</td>
<td>92</td>
</tr>
<tr>
<td>MT141 Chassis Layouts</td>
<td>93, 94</td>
</tr>
<tr>
<td>MT141 Chassis Layouts</td>
<td>95, 96</td>
</tr>
<tr>
<td>MT1414 Same as MT141</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: RE INDEXING

Since most TV circuits require fold pages for clear reproduction, it is necessary to bind them as a group in the middle of the book. As a result, related data such as alignment, voltages etc. may be widely separated in some cases. This is particularly true in this supplement because some models have as many as four different circuit diagrams which makes the fold section larger than normal. To avoid confusion, use your index to locate all data.
INDEX

ADMIRAL

Chassis
2921 Run 18 Circuit 47 to 49
2921 Chassis layouts 3 to 5
2921 Adjustments 7, 4, 6
2921 Coil identification 3
2921 All other data same as Run 13 in Supp. 26.

CAN. GENERAL ELECTRIC

Model
M28 Service problems 7
M28 All other data see Supp. No. 24.
M40 Service problems 7
M40 All other data see Supp. No. 25.

Model:
C7T011 TV Circuit 50, 51
C7T011 Tuner Circuits 24, 25
C7T011 Alignment 9 to 10
C7T011 Chassis layouts 9, 11, 15, 23, 52
C7T011 Printed circuits 26, 27
C7T011 Trouble shooting 19, 20, 21
C7T011 Component locations 22
C7T011 Production changes 21
C7T002 Same as C7T001.

Model:
C27443 Uses chassis M28.
C27443 Uses chassis M28.

PHILCO

Chassis
TL70 Circuit 59, 60
TL70 Tuner circuits 42
TL90 Alignment 36, 45, 46
TL70 Waveforms 43
TL70 Chassis layouts 39, 40, 41
TL70 Tuner layouts 69
TL70 Coil identification 38
TL70 U Same as TL70.
TL71 Same as TL70.
TL71-U Same as TL70.

ROGERS-MAJESTIC

Model
7640 Video alignment 70
7640 Chassis layout 71
7640 All other data same as R-7550 in Supp. No. 17.

VIKING

Model
TCD-255 Circuit 57, 58
TCD-255 Chassis layout 97
TCD-255 Tuner circuits 35
TCD-255 Alignment 35
TCD-255 Chassis layouts 94, 96
TCD-255 Chassis layouts 34, 37
TCD-255 Same as TCD-255.

WESTINGHOUSE

Chassis
X-2371 Circuit 67, 68
X-2371 Tuner circuits 103
X-2371 Alignment 89 to 102
X-2371 Power tuning data 97, 98, 104
X-2371 Same as X-2371.

Model
21V21 Uses chassis X-2371.
21V21U Uses chassis X-2381.
21V27K Uses chassis X-2371.
21V27KU Uses chassis X-2381.

ELECTROHOME

Model
Chicopee TV circuit 53, 54
Chicopee Tuner circuit 29
Chicopee Radio circuit 31
Chicopee Alignment 28
Chicopee Chassis Layouts 29, 30
Chicopee Coil identification 29, 30
Lybrook Same as Chicopee.
Rooton Same as Chicopee.
Telford Same as Chicopee.
73 Circuit 55, 56
73 Chassis layouts 32, 33
73 All other data same as 73A in Supp. No. 6.
74 Same as 73.
75 Same as 73.

RCA—VICTOR

Chassis
CT1218 (U) Circuit 61, 62
CT1218 Printed circuits 77, 78
CT1218 Tuner circuits 82, 83
CT1218 (U) Installation 73
CT1218 Alignment 76, 79
CT1218 Tuner layout 80, 81
CT1218 (U) Same as CT1218 (U).
CT1219 (U) Same as CT1219 (U).
CT1240 (U) Same as CT1240 (U).
CT1241 (U) Same as CT1241 (U).
KCS102B Circuit 63, 64
KCS102B Alignment 87
KCS102B Chassis layout 85, 86, 95
KCS102B Voltage chart 96
KCS102B Coil identification 84
KCS102D Circuit 65, 66
KCS102D Other data same as KCS102B.

RCC TELEVISION Supplement No. 28
NON OPERATING CONTROLS

PICTURE CENTERING—The use of an electronically focussed picture tube eliminates the need for occasional focus and centering adjustments. Centering is set at the factory by the centering device around the tube neck immediately behind the deflection coils. This may be checked by centering the top few screens of the output back.

ION TRAP MAGNET—Hold over tube neck by cramp or spring.

DEFOCUSED YOKE—Wiring loose areas.

WIDTH—Black short-circuit at the left hand protecting bracket.

HORIZONTAL LINEARITY—Black short-circuit at the right hand protecting bracket.

HORIZONTAL FREQUENCY—Black short-circuit at right hand corner.

HORIZONTAL DRIVE—Black short-circuit at right hand corner.

SYNC. GATING CONTROL—Black short-circuit at center.

A.C. GATE CONTROL—Black short-circuit at right side.

ION TRAP MAGNET ADJUSTMENT

Proper adjustment of the ion trap on the electrostatic kinescope is very important. Always mount the trap so that the magnet is closed to the tubular neck and adjust for the brightest positive raster. This is very important.

DESCRIPTION YOKE ADJUSTMENT

If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screws.

PICTURE ADJUSTMENTS

For further adjustments, obtain a test pattern on the receiver. Turn on receiver and follow tuning procedures.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT

Turn on receiver and adjust the horizontal hold control until the picture fills the screen. Momentarily remove the signal by switching off camera and then back. The picture should pull into sync over a range of 95° rotation of the horizontal hold control. If in the above check the receiver fails to hold sync or the pull-in range is at the extreme end of the control and is less than 60°, it will be necessary to make the following adjustments.

HORIZONTAL FREQUENCY ADJUSTMENT

With the horizontal control set at the center of the range of operation, adjust the horizontal frequency control until the picture fills the screen. (Remember the “Horizontal Oscillator Alignment.”)

HEIGHT AND LINEARITY ADJUSTMENTS

These controls are behind plastic hath tabs, behind trap door. Adjust these controls to balance picture height from top to bottom. Adjustment of either control will require a realignment of the deflection coils.

DRIVE ADJUSTMENT

(See also note under Mode Hopping)

WIDTH AND LINEARITY ADJUSTMENTS

Turn the W.D. Screw towards maximum clockwise position.

Turn the Main Linear Screw anticlockwise until it projects beyond bracket.

Set the Sync. Gating Control at 90° clockwise.

Set Horizontal Hold Control in centre position.

Adjust Horizontal Frequency Control until pattern looks in.

Adjust Sync. Gating Control for maximum stability of picture.

Adjust the Fine Trimmer as outlined.

Adjust W.D. and Linear control until picture is balanced with regard to width and linearity are obtained.

RECHECK DRIVE TRIMMER

Readjust Horizontal Frequency for balanced curve as outlined under check of horizontal oscillation alignment.

A.C. DELAY CONTROL

The control is designed to increase the blue in the I.F. signal to prevent the picture blocking on very strong signals.

NOTE: None of these controls will interact. Therefore an adjustment of one control may require a rechecking of other controls.

1. MODE HOPPING

When no mode of modulation of the horizontal multiovator changes so that the 15.75 kilocycle frequency is not achieved, several symptoms appear. These are as follows:

(a) A rought, medium-frequency noise is heard.

(b) The raster may be tiltable or just vibrates, and will consist of widely spaced horizontal lines fold-over in one or two places. These fold-overs will cause brightness variations to appear.

(c) The raster will be only about half its normal width.

(d) The horizontal output tube and the oscilloscope will be heavily overloaded.

Mode hopping will usually occur when the set is first turned on, especially from a cold start, and with low line voltage. It is caused by a leak in the horizontal discharge tube.

The correction of this condition, therefore, lies in the adjustment of the horizontal drive control. With the trimmer too far clockwise, a white vertical line appears at the center of the picture. This indicates too much drive. With the trimmer too far anti-clockwise, the mode hopping occurs. The proper position for the control is just in the left of the position where a vertical white line disappears.

SPITTING AND ARCSING

When the sweep circuits first begin to operate, there is a gradual build-up of noise voltage until the full fourteen kilovolt is applied. The splitting which is common in the narrow spacing between the anode of the cathode potential and focusing (at 12.5 kilovolts) electrodes of the kinescope. Any loose particles of screws or phosphor settle on the beam surface which will produce an arc and will be bunted off in the process. Any electrostatic kinescope will exhibit this arc action when new, especially after alignment and handling. On a period of time, the arc will become free and only occasional splitting action will be encountered. It can be no way hurt the receiver and is not at all dangerous.

2. GATING CONTROL AND PICTURE STABILITY

Exceptional picture stability, even in tropic areas, should be obtained from these receivers. However, with the gating control improperly set, it may be impossible to hold sync at all.

Operation of the SESR separator is as follows: the signal grid is fed a fussy sync, sync, positive signal, drive signal is very low and plate voltage is held down by the direct connection to the 12AT7 phase inverter grid following. With the high (15 megohms) signal grid resistor, positive peaks of the incoming signal (the direct signal) cause grid current so that the grid biases itself off to a hot negative value. The SESR in then operating as a normal grid leak. Some leaks are.

Under these operating conditions, the cutoff characteristic of the oscillator grid is very sharp. Applied to this oscillator grid is a clean sync, negative signal as well as a d.c. bias adjustable from the gating con-

3. SETTING OF SYNCHRONIZATION TRANSMITTER

nected with the gating control properly set, the SES block will just conduct during sync, peaks. Any signal beyond the transmission point which is above the input of the SESR separator is shunted off at the interval of sync, peaks and is to stop when the sync is received.

The overall results of this type of separation give a remarkably clean picture under any conditions. Line sync signal and any synchronizing signal in effect would be removed accordingly. However, the amplified, by an a.c. grid resistor is practically flat spot.

4. ARCING AND ARCING OF SYNCHROSCOPIC TUBE

When the signal is too high, the output signal in the output tube will be too high and the arcs will be severe. Proper setting of the gating control is as follows: too far anti-clockwise, the picture will be too low, and too close to the center the horizontal (doubling or the blocking of horizontal portions of the video). Too far counterclockwise, the picture becomes unstable at the center vertical sweep may be observed. The proper setting is in between these extremes. The weak signal sweep, better stability will be realized with the vertical retarding (counter-clockwise) from the position. Under any conditions, a reasonably broad range of adjustment is required on the control.

TO REMOVE CHASIS FROM CABINET

1. Remove knobs by pulling straight out from their shafts.

2. Remove the cabinet back.

3. Disconnect and remove speaker.

4. Remove the nuts on the four chassis mounting "J" bolts until they become disengaged from the holes in the chassis skirts. It is not necessary to remove the nuts and washers completely from the bolts.

5. Pull the chassis carefully to the rear.

TO REPLACE KINESCOPE

1. Remove the chassis as above.

2. Remove high voltage connector from cavity in kinescope bell. TOUCH CONNECTOR TO CHASIS TO REMOVE STATIC CHARGE.

3. REMOVE STATIC CHARGE ON KINESCOPE BY SHAKING WITH AN INSULATED WIRE BETWEEN THE CATHODE IN KINESCOPE BELT AND CHASIS.

4. Remove kinescope socket and escarp.

5. Loose kinescope retaining bands.
6. Leave bracket on front which prevent kinescope from moving forward.

7. Lift front of kinescope very gently, just enough to prevent striking the kinescope glass and glass condenser in audiofeedback strip (10) from moving.

8. Push the kinescope forward very carefully. Don't strain the kinescope neck. If bending occurs, replace the kinescope on its vibration, loosen the screws holding the rear support bracket, and loosen the wingnut holding the delrin bushing. With a needle pointed against the tube from the rear, draw it straight forward until the bushing and the flexure, of the flexure bushing, is straight forward.

9. Mount the tube, reverse the above, making sure that the flexure bushing is against the bracket, the plane at the rear of the tube is forward so as to support the tube all the way around the support.

SERVICE PRECAUTIONS

To service the receiver remove the chassis from the cabinet. To do so, remove the knobs, the cabinet back, the chassis mounting bolts. The chassis may be removed with the picture tube in place provided the chassis is turned on its side with the housing on the left. The weight of the chassis will be held against the housing. A block of wood under the corners of the picture tube will help steady the chassis.

WARNING: THIS IS A VOLTAGE-SENSITIVE CHASSIS. THE FRONT TOP PORTION, IF WHICH IS DIRECTLY CONNECTED TO AC LINE, NO MATTER WHETHER THE AC SWITCH IS TURNED ON OR OFF, CHECK POLARITY FOR ZERO AC VOLTAGES BETWEEN SUBCHASSIS AND AS EXTERNAL POWER CORD GROUND BEFORE TOUCHING THE SUB-CHASSIS.

TEST EQUIPMENT

To service this receiver properly, it is recommended that the following test equipment be available:

R.F. SWEEP GENERATOR—meets the following requirements:
- Frequency ranges:
 - 20 to 30 kHz, 20 kHz sweep width
 - 15 to 35 MHz, 10 MHz sweep width
 - 15 to 200 kHz, 10 kHz sweep width
- Output adjustment with at least 1 V maximum
- Output rotated at all ranges
- Flat output in all attenuator positions.

CATHODE-RAY OSCILLOSCOPE—preferably one with a wide band vertical deflection and an input calibrating meter.

SIGNAL GENERATOR—provides the following frequencies, with adjustable output over the amplitudes specified:
- 25.35 Hz, 140 Hz to 10 V
- 3.3 kHz, 100 Hz to 10 V
- 5 kHz, 100 Hz to 10 V
- 6.2 kHz, 100 Hz to 10 V
- 15 kHz, 50 Hz to 15 V
- 20 kHz, 20 Hz to 20 V
- 25 kHz, 20 Hz to 20 V
- 30 kHz, 20 Hz to 20 V
- 35 kHz, 20 Hz to 20 V
- 40 kHz, 20 Hz to 20 V
- 50 kHz, 20 Hz to 20 V
- 60 kHz, 20 Hz to 20 V
- 70 kHz, 20 Hz to 20 V
- 80 kHz, 20 Hz to 20 V
- 90 kHz, 20 Hz to 20 V
- 100 kHz, 20 Hz to 20 V

HETERODYNE FREQUENCY METER—with crystal calibrator if the signal generator is not crystal controlled.

ELECTRONIC VOLTMETER—used a high voltage probe for use with this meter to permit measurements up to 20 kilovolts.

SOUND L.F. ALIGNMENT

Reverse picture detector EAL (51) from its socket.

Connect 4.5 micro signal generator through 1000 ohms to pin 7 of EAL (51). Connect 4.5 micro signal generator through 1000 ohms to pin 7 of EAL (51). Connect de VTVM to pin 7, EAL 40 micro detector (37).

Align for maximum output, sound audible (10) bot, picture L.F. transformer (48) top and bottom, and ratio detector transformer primary (49), bottom. Regular tuning under there volts by reducing input so necessary. Increase input until output reads 5 volts.

Then connect VTVM as follows; ground side to junction of 22000 ohm resistors across ratio detector pins 5 and 7, strip (10), trim, top, high side to audio takeoff strip (16) trim (11) from. Adjust ratio detector transformer (49) top for zero voltage between 4 and > peaks.

4.5 MC. TRAP ALIGNMENT

With signal generator connected as above and EAL (51) cut of its circuit connect an AC reading VTVM or oscillograph and DC VTVM in kinescope grid (strip 40) I.D. Apply l.5 volts C.W. from generator and align 4.5 micro trap (51) for minimum response.

VIDEO L.F. ALIGNMENT

Replace EAL 40 micro detector (37).

A. Connect L.F. signal generator to mini grid by means of ungrounded tube shield. Connect DC VTVM with 22000 ohm to be passed by 1000 ohms in series with the probe to junction of green tracing resistor and 4700 ohm resistor (strip 51) trim (2).

Apply 1.5 volts battery bias to A.C.G. line strip (51) trim (2).

At the following frequencies, edge the scale indicated, keeping the reading on the VTVM no greater than .75 volts.

- 25.35 Hz
- 25.1 Hz
- 24.8 Hz
- 24.6 Hz
- 24.4 Hz
- 24.2 Hz
- 24.0 Hz
- 23.8 Hz
- 23.6 Hz
- 23.4 Hz
- 23.2 Hz
- 23.0 Hz
- 22.8 Hz
- 22.6 Hz
- 22.4 Hz
- 22.2 Hz

FLATNESS LEVEL ADJUSTMENT

- 105-155 Volts AC circle as marked
- 175 Volts A.C. circle
- 20 Watts Maximum
- 1.8 Watts Unfiltered
- 5.0 Watts Balanced
- 10 Watts Balanced
- 15 Watts Balanced
- 20 Watts Balanced
- 25 Watts Balanced
- 30 Watts Balanced
- 35 Watts Balanced
- 40 Watts Balanced
- 45 Watts Balanced
- 50 Watts Balanced
- 55 Watts Balanced
- 60 Watts Balanced
- 65 Watts Balanced
- 70 Watts Balanced
- 75 Watts Balanced
- 80 Watts Balanced
- 85 Watts Balanced
- 90 Watts Balanced
- 95 Watts Balanced
- 100 Watts Balanced
- 105 Watts Balanced
- 110 Watts Balanced
- 115 Watts Balanced
- 120 Watts Balanced
- 125 Watts Balanced
- 130 Watts Balanced
- 135 Watts Balanced
- 140 Watts Balanced
- 145 Watts Balanced
- 150 Watts Balanced
- 155 Watts Balanced
- 160 Watts Balanced
- 165 Watts Balanced
- 170 Watts Balanced
- 175 Watts Balanced
- 180 Watts Balanced
- 185 Watts Balanced
- 190 Watts Balanced
- 195 Watts Balanced
- 200 Watts Balanced
- 205 Watts Balanced
- 210 Watts Balanced
- 215 Watts Balanced
- 220 Watts Balanced
- 225 Watts Balanced
- 230 Watts Balanced
- 235 Watts Balanced
- 240 Watts Balanced
- 245 Watts Balanced
- 250 Watts Balanced

 pháng-17
With fine tuning control set at mid-position, sound carrier marker should fall in sound carrier dip. Adjust oscillator slugs at front of tuner to obtain this.

The flatness across the top should not be more than ± 15 percent from level on any channel: Adjustment of the following trimmers should help if required: antenna trimmer nearest where the twin lead emerges, r.f. trimmer between the tubes, and mixer trimmer in front of the 616.

However, very few sweep generators indicate the correct r.f. response, especially on the high channels, due to reflections in the connecting cables. Do not rely heavily on the curve shape.
ELECTROHOME
75, 81, 82, MARDIGRAS

Symbols
B - Ground to top chassis plate. This is directly connected to one side of all line-ground connection to chassis shown isolated from B- plate.

Component Values
R - 1000, M - 100,000 ohm.
Resistors: Half watt, 20% tolerance unless otherwise noted.
Condensors:
C - Ceramic, followed by capacity in mfd and tolerance and voltage if critical.
M - Mylar, followed by capacity in mfd, and tolerance and voltage if critical.
T - Tantalum, followed by capacity in mfd and tolerance.
E - Electrolytic, followed by capacity in mfd and tolerance.
S - Silver mica.

Voltage and coil resistances are shown.
Sound: 1.5 - 2.0 f 4.5 mc.
Picture: LF - 26.2 mc.
Vertical response: To 3.2 mc.

Circled numbers such as shown in pictorial diagram.
TV power switch shown in 2 Position.

75, 81, 82 MARDIGRAS

changed from 230v to 156v line