

GENERAL DESCRIPTION

Abstract

UHF Selector Model U70 permits the reception of any UHF television station within receiving range when employed with a VHF television receiver. The unit employs three tubes plus rectifier and a crystal mixer.

ELECTRICAL SPECIFICATIONS

TELEVISION R-F FREQUENCY RĀNGE

All 70 UHF television channels. 470 mc . to 890 mc .
I-F Output Frequency
POWER SUPPLY RATING........ 115 volts, 60 cycles, 40 watts WEIGHT AND DIMENSIONS

Net	Shipping	Width	Height	Depth Weight
Weight	Inches	Inches	Inches	
10 lbs	12 lbs	$111 / 8$	$81 / 4$	$921 / 32$

ANTENNA INPUT IMPEDANCE

UHF - Choice: 300 ohms balanced or 72 ohms unbalanced.
VHF - 300 ohms balanced.
TUBE COMPLEMENT

Tube Used	Function
6AF4	R-F Oscillator
1N82	Crystal Mixer
6CB6	.1st I-F Amplifier
6CB6	2nd I-F Amplifier
	Rectifier

INSTALLATION INSTRUCTIONS

The UHF Selector has been designed to operate from either of three types of antenna installations.
In all cases, the VHF antenna transmission line must be disconnected from the VHF receiver and reconnected to the selector VHF antenna terminals. A short length of 300 ohm line must then be connected between the VHF receiver antenna terminals and the selector terminals marked "Receiver."

If the UHF signals from the VHF antenna are strong and free from reflections, the above connections are all that are required. See Figure 1.
if a separate UHF antenna with 300 ohm transmission line is employed, connect the line to the selector terminal board marked UHF. Then, disconnect the 300 ohm line which runs over the fiber back and into the selector. Tape the ends of these leads so that they will not short other terminals on the back and cause trouble. See Figure 2.

If a separate UHF antenna with 72 ohm co-ax transmission line is employed, remove the balun, attach a male co-ax fitting to the antenna transmission line and plug it into the selector co-ax input at the lower left hand corner on the selector rear apron. Dress or tape the co-ax line so that it cannot be pulled out if the-customer moves the selector. See Figure 3.

Figure 1-Selector Connections When VHF Antenna Is Employed For UHF Reception.

VHF Anten

Figure 2-Selector Connections For Use of Separate UHF Antenna With 300 Ohm Lead-In.

Plug the television receiver power cord into the α-c receptacle on the back of the selector and plug the selector power cord into the nearest 110 volt $\alpha-\mathrm{c}$ outlet. With this connection, if the VHF receiver "on-off" switch is left in the "on" position, both the receiver and the selector will be controlled by the selector function switch.

With the selector function switch in the VHF position, the receiver is turned "on," the selector is "on" but in stand-by condition and the VHF antenna is connected through to the receiver.

With the selector function switch in the UHF position, the selector is operating, the VHF antenna is disconnected from the receiver, the selector output is connected to the receiver and the antenna employed for UHF operation is connected to the selector input.

To receive a UHF station, switch the selector function switch to UHF and the television receiver to channel 5 or 6 , whichever is vacant in the receiving area. Tune in the UHF station by adjusting the selector tuning knob. The selector dial is calibrated in channel numbers as an aid in locating the channel. Tune the selector for best sound and picture. In some instances interference may result if the receiver fince tuning control is not properly adjusted. If this should occur, adjust fine tuning until the interference is eliminated and retune the selector for the best sound and picture.

Figure 3-Selector Connections For Use of Separate UHF Antenna With 72 Okm Co-Ax.

ALIGNMENT PROCEDURE

TEST EQUIPMENT The following test equipment is required for alignment of the U70 UHF Selector:

A UHF sweep generator with α range of 470 mc . to 890 mc .
\AA VHF sweep generator with a range of 70 mc . to 90 mc .
A UHF marker generator for locating 480,630 and 840 mc .
A VHF marker generator capable of supplying 72.5 mc .,
76.5 mc ., 82.5 mc ., 88.5 mc . and 92.5 mc . signals.

An oscilloscope with a high gain vertical amplifier.
\vec{A} milliammeter with $\alpha 0.5 \mathrm{ma}$. range.
A resistive pad for terminating the sweep generator cable.
A 300 ohm balanced detector.
A small protractor.

I-F ALIGNMENT

Second I-F Stage - Construct a 300 ohm balanced detector as shown in Figure 4 and connect it to terminal board TB3.

Connect α high gain oscilloscope to the balanced detector and set the gain to maximum.

Connect α jumper across terminals A and B of $T 1$.
Connect a 72 ohm attenuator pad of the type shown in Figure 5 to the output cable of the sweep and connect the output of the pad to the grid, pin 1 of V2 and to ground.

Set the sweep generator to sweep from 72 mc . to 90 mc. As an aliernate, an RCA WR59 sweep generator may be employed and switched to channel 5 to see the low frequency side of the response curve and to channel 6 to see the high frequency side of the response curve.
Insert markers from the VHF marker generator by loosely coupling the generator output cable to the grid of V2.

Adjust the T2 pri. and sec. cores and the bandwidth trimmer C22 to obtain response as shown in Figure 9A.
The bandwidth capacitors C22 (and C21 in T1) consist of a short piece of wire soldered to terminal \bar{A} and the free end inserted into a ceramic tube capacitor. Adjustment is made by pushing the wire in further or pulling it out.
Firsi I-F Stage - Remove the jumper from terminals A and B of $T 1$ and reconnect it actoss terminals A and B of $T 2$.

Connect the balanced detector across T2 terminals C and D.
Connect the output cable of the sweep generator with the 72 ohm pad through a $1,500 \mathrm{mmf}$. capacitor to pin 2 of V1.

Connect the VHF marker generator loosely to pin 2 of V1.
Adjust the Tl pri. and sec. cores and the bandwidth trimmer C21 to obtain the response shown in Figure 9B.

Overall I-F Response - Leave the sweep generator connected to the cathode of V1.

Remove the jumper across terminals A and B of T2.
Connect the balanced detector across terminal board TB3.
The overall i-f response should appear as shown in Fig. ure 9C. The oscilloscope gain should be kept at maximum and the input kept low to prevent overloading the selector.

If excessive tilt of the curve is present, retouch the Tl and T2 pri. and sec. cores until the curve is reasonably flat.

R-F RIIGNMENT

If the selector needs only touch-up adjustments, no presetting of the tuning cores is required. However, if the selector is completely out of clignment, the tuning cores should be preset as follows. With the dial drive mechanism $11 / 4$ tums from the low frequency stop (channel 14 end of the dial), set the C18 oscillator tuning core as shown in the Figure 6A. The cores of the r-f tuning capacitors Cl and C 2 should be set as shown in Figure 6B. The tapered end of the I9 core should be set about $3 / 4$ of an inch from the closest end of the L9 coil as shown in Figure 6C.

Turn the dial drive mechanism until it comes up against the stop at the low frequency (channel 14) end of the dial. Turn the dial pointer on its shaft until the pointer coincides with the end marker on the dial back plate.

Turn the dial drive mechanism until the pointer is 17 degrees to the left of center of the dial when the selector is sitting in an upright position. This position should be located with a protractor to insure accuracy. Make a small mark on the dial back plate so that the dial can be returned to this position quickly and accurately throughout the remainder of the alignment procedure. This is the 630 mc . calibration point.

Connect the 300 ohm balanced detector across terminals \mathbb{A} and B of Tl and shunt a 1,000 ohm resistor across terminals C and D of $T 1$.

Connect the UHF sweep generator through $\alpha 6 \mathrm{db}$ pad to the 72 ohm co-ax input to the selector at JI. It is necessary to
use the pad so that impedances will be matched. Otherwise standing waves on the sweep cable may become objectionable.

Connect the UHF marker gen. loosely to the selector input.
Connect a VHF marker generator loosely to the cathode of V1. Insert an 82.5 mc. marker into the selector.

630 Mc. Adjustments - Turn the dial drive mechanism until the dial pointer points to the 630 mc . calibration mark scribed on the dial back plate at 17 degrees left of center.

Insert a 630 mc . marker from the UHF marker generator.
Set the UHF sweep generator to sweep from 615 mc . to 645 mc . and observe the output on the oscilloscope. If the sweep generator is not sweeping the correct frequency range, it may be necessary to readjust the sweep in order to center the 630 mc . marker on the response curve.

The shields must be in place over the top and bottom of the r-f section when making any adjustments.

Adjust the C18 oscillator core until the markers for 630 mc . and 82.5 mc . coincide on the sweep pattern.

Adjust the cores of the r-f tuning capacitors Cl and C 2 to obtain a maximum amplitude, symmetrical response curve centered about the 82.5 mc . marker.

Set the bandwidth adjustment L2 until the response bandwidth is 20 mc . at 70% response.

Tune LS for max. response at the center of the bandpass.
Repeat the adjustments of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{~L} 2$ and L 5 if necessary.
Plug the $0-5$ milliammeter into the crystal current jack 32 . The current should be between 0.8 ma . and 5 ma . If this current is not obtained, either the crystal is defective or the oscillator is not functioning properly. The bottom cover should be in place when measuring crystal current.

Turn off the sweep and marker generators. If the crystal current decreases by more than 10%, it indicates that excessive input signals are being employed. Proper alignment cannot be obtained under such conditions.

490 Mc . Adjustments - Set the UHF marker gen. to 490 mc .
Set the UHF sweep gen. to sweep 475 mc . to 505 mc .
Turn off the 82.5 mc . marker generator.
Turn the UHF selector toward the low frequency end of the band. Tune the selector and the sweep generator until the 490 mc . marker is centered in the bandpass.

Turn the 82.5 mc. marker back on.
Adjust C18 until the markers coincide. Then, overshoot the adjustment by an amount slightly less than the amount of adjustment required to get the marisers to coincide. Then close or spread the turns on the L9 coil until the markers again coincide.

Repeat the adjustments in the section above labeled " 630 Mc. Adjustments." C1, C2, L2 and L5 probably will not require retouching. Then repeat the adjustments in the section above labeled " 490 Mc. Adjustments." Continue the repetition of the 630 mc . and 490 mc . adjustments until no further adjustments are required. Make the final adjustment at 630 mc . before proceeding with the next section.

840 Mc. Adjustment - Set the UHF marker gen. to 840 mc . Turn off the 82.5 mc . marker generator.
Adjust the UHF sweep gen. to sweep 825 mc . to 855 mc .
Turn the UHF selector dial drive and the sweep generator until the 840 mc . marker is centered in the bandpass of the response curve on the oscilloscope.

Turn the 82.5 mc . marker back on.
Adjust the L 9 core until the two markers coincide.
Check of Tracking - Turn off the UHF marker generator.
Tune the sweep generator across the band in small steps.
Tune in the sweep generator with the selector.
The response on the oscilloscope should fall below 70% response between the 76.5 mc . and 88.5 mc . maxkers obtained from the VHF marker generator.

The crysial current should be between 0.8 and 5 mas. at all points between 470 mc . and 890 mc . when measured with the bottom shield in place and with no signal input.

Overall Response Check-Leave the sweep and signal generators connected as for r-f alignment. Remove the 1,000 ohm resistor from terminals C and D of T1. Connect the 300 ohm balanced detector across the output terminal board TB3 and observe the overall response which should be similar to that shown in Figure 5. If excessive tilt appears, it may cause the picture to be overpeaked or smeared depending on the direction of the tilt. The maximum tilt or sag of the curve should not exceed 30%.

ALIGNMENT DATA

Ais Check - As α final test, the selector should be tested on the air by receiving a known weak signal. If the picture obtained seems excessively snowy for a particular selector unit, it may be necessary to replace the mixer crystal CRI. If the crystal is changed, the r-f alignment should be retouched. A good crystal may perform no better than a defective one unless the r-f section is aligned for the good crystal.

Figure 4-300 Ohm Balanced Detector

Figure 5-Sweep Cable Attenuator

Figure 6-Preset for R-F Adjustments

Figure 7-Bottom Chassis Adjustments

Figure 8-Dial Cord and Drive

Figure 9 -Sweep Response Curves

Figure 10 - Top Chassis Adjustments

REPLACEMENT PARTS

$\begin{aligned} & \text { STOCR } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES	77489	Rectifier-Crystal rectifier 1N82 (CR1)
	KCS7	30340	Retainer-Retainer ring for drive shaft Resistor-Fixed, composition:
77097	Back-Back cover complete with three (3) terminal boards	503033	33 ohms, $\pm 10 \%, 1 / 2$ watt (Rl)
76184	Board-Terminal board for back cover	503047	47 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R4)
77069	mbly	503068	68 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R5)
	includes L2 and part of L1, L3, C1, C2) less	503115	150 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R2)
	glass tubing	523133	330 ohms, $\pm 10 \%, 2$ watt (R13)
76522	Bracket-Vertical bracket for tube shield for 6AF4	503212	1,200 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R8)
77072	Bushing-Drive shaft bushing (in rear of coil spring)	523215	1,500 ohms, $\pm 10 \%, 2$ watt (R10, R12)
77210	Capacitor-Ceramic, 2 mmf . (C16)	503222	2,200 ohms, $\pm 10 \%, 1 / 2$ watt (R3)
77108	Capacitor-Ceramic, 9 mmf . (Cll)	503233	3,300 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R7)
77085	Capacitor-Ceramic, feed-thru, 10 mmf . (C3)	503282	8,200 ohms, $\pm 10 \%, 1 / 2$ watt (R11)
45465	Capacitor-Ceramic, 15 mmf . (C20)	503310	10,000 ohms, $\pm 10 \%, 1 / 2$ watt (R6)
77209	Capacitor--Ceramic, 18 mmf . (C15)	513322	22,000 ohms, $\pm 10 \%, 1$ watt (R9)
70935	Capacitor-Ceramic, 27 mmf ((C12, C13)	77078	Shaft--Drive shaft
70599	Capacitor-Ceramic, 56 mmf . (C5)	77092	Shield-Shield assembly for oscillator tuning as-
75198	Capacitor-Ceramic, 470 mmf ($\mathrm{C} 4, \mathrm{C7}, \mathrm{C8}, \mathrm{C} 9, \mathrm{Cl0}$)		
77084	Capacitor-Ceramic, feed-thru, 1,000 mmf. (C14, C17)	77091	Shield-Shield assembly for r-f tuning assembly
77252	Capacitor-Ceramic, $1,000 \mathrm{mmf}$. (C6)	77090	Shield-Tube shield for 6AF4
77086	Capacitor-Electrolytic comprising 1 section of 50	76967	Shield-Tube shield for 6CB6
	mfd., 200 volts and 2 sections of 30 mfd ., 200 volts (C19A, C19B, C19C)	31251	Socket-Tube socket, octal, wafer
77102	Clamp-Polystyrene clamp for oscillator tuning $\mathrm{c} \alpha$ -	31364	Socket-Dial lamp socket
77109	pacitor and coil (2 required) Coil-Choke coil (L6, L7, L8, L10)	77087	Socket-Tube socket, 7 pin, miniature, moulded phenolic, saddle-mounted
77083	Coil-Cathode peaking coil (L5)	77207	Socket-Tube socket, 7 pin, miniature, steatite, saddle-mounted
77224	Coil-Oscillator tuning coil (L9)	77071	Spring-Drive shaft spring
72618	Coil-Peaking coil (20 muh) (L4)	77096	Spring-Drive cord spring
77212	Connector-Single contact male connector for antenna matching assembly (Pl)	12007	Spring-Retaining spring for adjusting cores
75474	Connector-Single contact male connector for W3, W4, W5	$\begin{aligned} & 75068 \\ & 77208 \end{aligned}$	Spring-Retaining spring for tube shield for 6AF4 Support-Oscillator tuning coil support (glass tube)
77088	Connector-Single contact connector for 72 ohm antenna connection (J)	77099	Support-Polystyrene support only for oscillator tuning coil and capacitor
52131	Connector-2 contact female connector (J3)	77089	Switch-Function and power switch (S1, S2)
72953	Cord-Drive cord (approx. $23^{\prime \prime}$ overall)	76463	Terminal-Screw type grounding terminal
72953	Cord-Drive cord (approx. $38^{\prime \prime}$ overall)	77080	Transformer-Power transformer, 117 volts, 60 cycles
70392	Cord-Power cord and plug		(T3)
77074	Core-Adjusting core assembly for r-f tuning assembly capacitors Cl and C 2	77081	Transformer-First i-f transformer complete with adjustable cores (T1, C21)
77075	Core-Adjusting core assembly for oscillator tuning capacitor Cl 8	77082	Transformer-Second i-f transformer complete with adjustable cores (T2, C22)
77076	Core-Adjusting core assembly for oscillator tuning coil L9	77100	Tubing-Capacitor tubing (glass) for oscillator tuning capacitor (Part of C18)
77093	Cover-Bottom cover for oscillator tuning shield Crystal-See Rectifier	77070	Tubing-Capacitor tubing (glass) for r-f tuning assembly capacitors Cl and C 2
77103	Cushion-Rubber cushion for mounting oscillator tuning coil (2 required) or oscillator tuning capacitor (2 required)	2917 33726	Washer-" C " washer for drive shaft and drive cord pulleys
74838	Grommet-Power cord strain relief (1 set)	33726	tainer post
77079	Holder-Holder for crystal rectifier	77098	Washer-Spring washer for drive shaft
75482	Jack-Test jack (J2)		
11765	Lamp-Dial lamp-Mazda 51		MISCELLANEOUS
77106	Plate-Dial back plate and bushing less dial and pulley	77111	Clamp-Dial clamp (2 required)
77073	Plate-Plate complete with five (5) bushings for drive shaft and adjusting cores	$\begin{aligned} & 77110 \\ & 77033 \end{aligned}$	Dial-Glass dial scale Emblem-"RCA Victor" emblem
77095	Pointer-Station selector pointer	77492	Foot-Rubber foot (4 required)
77077	Post-Retainer post for plate and bushing assembly	77251	Knob-Function and power switch knob-maroon
77105	Pulley-Drive cord pulley ($13 / 8^{\prime \prime}$ dia.) and shaft	77140	Knob-Tuning control knob-maroon
77094	Pulley-Drive cord pulley ($23 / 4^{\prime \prime}$ dia.) and shaft assembly	$\begin{aligned} & 77013 \\ & 74734 \end{aligned}$	Nut-Speednut to fasten emblem to cabinet Spring-Spring clip for knobs

